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Lecture 1, 21 Oct 2020

1. Introduction

1.1. Administration and Prerequisites. First a few words on the format of the course.

The course will be held via the ZOOM video service, on Wednesdays at 12:10 - 14:00.

Formal registration is not required, unless you want a grade (pass/fail). Passing the course
requires attending all lectures and submitting most of the HW (preferably typed).

However I expect all participants to attend all the course meetings (virtually, with cameras
on), after the �rst two trial meetings.

The homework exercises are included in the course notes.

If you have not done so yet, please email me your name, academic status, and relevant
mathematical knowledge.

Each week (usually on Tuesday) I will send an email with the zoom link for that week’s
lecture, and a draft of the typed lecture notes. A corrected version of the notes will be
uploaded to the course web page after the lecture.

Participants are welcome to ask questions in real time (by unmuting your microphone),
or by email to me or to Dr. Mattia Ornaghi (a postdoc who will assist me).

^ ^ ^

Now a few words on prerequisites.

I expect all participants to have good knowledge of abstract topology.

We shall use categories and functors a lot. Since some students are not familiar with this
topic (unfortunately), we will learn it quickly next week (with the help of homework).

Some commutative algebra is essential, like prime ideals, tensor products (of rings and
modules), and localization.

Some understanding of di�erential geometry is needed, mostly for use in examples.

Galois theory will be used in examples. Knowing it is very useful, but not crucial, for this
course.

1.2. On Geometry. Let me say a few words on geometry.

By geometry I mean the mathematical study of spaces that have more structure than topo-
logical spaces. Usually (in modern mathematics) the geometric structure comes on top of
a given underlying topological structure.

Here is an example from di�erential geometry. Let - and . be the real plane ℝ2, consid-
ered as a di�erentiable manifold (over ℝ of type C∞). Inside - we have a straight line -0
and a point G ∈ -0. Inside . we have a broken line .0, and H ∈ .0 is the singularity (the
breaking point). See picture:
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Topologically the con�gurations G ∈ -0 ⊆ - and H ∈ .0 ⊆ . are indistinguishable.
Namely we can �nd a homeomorphism 5 : - → . such that 5 (-0) = .0 and 5 (G) = H .

However, in di�erential geometry they are distinct geometric con�gurations: there does
not exist a di�eomorphism 5 : - → . such that 5 (-0) = .0 and 5 (G) = H .

This can be seen by examining tangent directions at G and H . (Try to give full proofs of
these assertions.)

How do we describe the extra geometric structure on an =-dimensional di�erentiable
manifold - , that comes on top of the given topology?

In earlier courses you learned that this is done by an atlas. Namely the space - has an
open covering - =

⋃
*8 , and for each 8 there is a homeomorphism 68 : *8 → +8 to an

open set +8 ⊆ ℝ= . The condition is that the map

6 9 ◦ 6−1
8 :,8, 9 → ℝ=

where,8, 9 := 68 (*8 ∩* 9 ) ⊆ ℝ= , is di�erentiable for all 8, 9 .

(1.2.1)

It turns out that instead of an atlas, the same geometric information can be encoded by
declaring what are the di�erentiable functions 5 : * → ℝ, for every open set* ⊆ - .

This means that for every open set * ⊆ - we need to provide a ring of functions, let’s
denote it by Γ(* ,O- ), and these rings must interact suitably w.r.t. inclusions* ′ ⊆ * .

This data O- is called a sheaf of rings on - . The pair (-,O- ) is called a locally ringed
space.

In the case of a di�erentiable manifold - , the ring Γ(* ,O- ) is just the ring of di�eren-
tiable functions 5 : * → ℝ.
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Moreover, we will see that given two di�erentiable manifolds (-,O- ) and (.,O. ), a
continuous map 5 : . → - is di�erentiable i� a certain condition involving the sheaves
O- and O. , and the continuous function 5 , is satis�ed.

For those �uent in the language of categories, the statement is that the category of di�er-
entiable manifolds embeds fully faithfully inside the category of locally ℝ-ringed spaces.
This is something we are going to prove.

For purposes of di�erential geometry the sheaf approach is not essential; but for more
complicated geometric settings, especially for algebraic geometry, the sheaf approach is
crucial.

Indeed, a scheme, as de�ned by Grothendieck in the 1950’s, is a locally ringed space
(-,O- ), which locally is an a�ne scheme. Heuristically this means that there is an atlas
like in (1.2.1), but the*8 are a�ne schemes.

An a�ne scheme is a geometric object that is totally controlled by its ring of functions.
Indeed, for every (commutative) ring � there is an a�ne scheme Spec(�); and maps of
schemes

5 : Spec(�) → Spec(�)
are the same as ring homomorphisms 5 ∗ : �→ �.

If there is time I will say more on a�ne schemes today.

Note that the role of calculus in di�erential geometry is played in algebraic geometry by
the theory of commutative algebra.

We shall spend the next few weeks learning about sheaves on topological spaces, before
we introduce schemes.

Here are some aspects of scheme theory that make it superior to classical algebraic ge-
ometry:

• Algebraic geometry over �elds that are not algebraically closed. We will see the
a�ne real line A1

ℝ
soon.

• In arithmetic geometry the schemes are de�ned over the base ring ℤ; there is no
base �eld at all. The prototypical example is the curve (-,O- ) = Spec(ℤ), whose
points are the prime ideals of ℤ.

• In a scheme (-,O- ) the sheaf of rings O- can have nilpotent elements. These
nilpotents enable algebraic in�nitesimal calculus, including the detection of sin-
gularities.

1.3. Examples. The rest of this �rst lecture will consist of examples, without giving all
the de�nitions – a kind of a preview of things to come.

Please let me know in real time if some concept I am talking about is not familiar to you,
or if some assertion is not clear. I will either explain these, or defer them to later stages
of the course.

In these examples we will work the the �eld of real numbers ℝ.

By an ℝ-ring we mean a commutative ring �, equipped with a ring homomorphism
q� : ℝ → �, called the structural homomorphism. (Older books used the expression
"ℝ-algebra".) If � is another ℝ-ring, then an '-ring homomorphism k : � → � is a ring
homomorphism such thatk ◦ q� = q� .
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All rings have unit elements, and these units must be preserved by ring homomorphisms,
i.e.k (1�) = 1� .
We shall start with the ring � := ℝ[C] of polynomials in one variable over the real num-
bers. It is an ℝ-ring in an obvious way.
Note that given an ideal a ⊆ �, the quotient ring �/a is automatically an ℝ-ring, and the
canonical surjection c : �→ �/a is the unique ℝ-ring homomorphism from � to �/a.
For us � is the ring of global algebraic functions on the a�ne line A1

ℝ
.

But what is the a�ne line A1
ℝ

as a geometric object?
The answer is this: A1

ℝ
is the prime spectrum of the ring � = ℝ[C].

The notation is
A1
ℝ = Spec(ℝ[C]).

The set of points of the scheme A1
ℝ

are the prime ideals of the ring � = ℝ[C].
We know that all prime ideals of � are principal, and they are of three kinds:

(i) The maximal ideals m = (C − _) for _ ∈ ℝ.
(ii) The maximal ideals m generated by irreducible quadratic monic polynomials,

such as m = (C2 + 1).
(iii) The prime ideal (0).

Correspondingly, the a�ne line A1
ℝ

has three kinds of points, and each point has a residue
�eld:

(i) A point G = m = (C −_) with _ ∈ ℝ is called an ℝ-valued point of A1
ℝ

. The residue
�eld of G is

k (G) = �/m � ℝ.

The "coordinate function" C has a value C (G) ∈ k (G), which by de�nition is the
residue class of C modulo m.
But since there is a unique ℝ-ring isomorphism k (G) '−→ ℝ, we can say that the
value is C (G) = _ ∈ ℝ.
The set of ℝ-valued points of A1

ℝ
is denoted by A1

ℝ
(ℝ). We see that there is a

canonical bijection of sets A1
ℝ
(ℝ) '−→ ℝ, G ↦→ C (G).

Here is the picture:

For instance, the origin is the point G ∈ A1
ℝ
(ℝ) s.t. C (G) = 0.

(ii) A point G = m s.t. the maximal ideal m is generated by a quadratic irreducible
monic polynomial ? (C) has a residue �eld

k (G) = �/m � ℂ.

There is no canonicalℝ-ring isomorphism k (G) '−→ ℂ. Indeed, there are two equally
good isomorphisms q8 : k (G) '−→ ℂ, 8 = 1, 2, and they are related by q2 = f ◦
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q1, where f is complex conjugation. The isomorphism q8 sends C ↦→ _8 , where
_1, _2 ∈ ℂ are the two distinct roots of the polynomial ? (C).
In other words, the value C (G) ∈ k (G) is well-de�ned: it is the residue class of C
modulo m; but the value C (G) = _8 ∈ ℂ depends on the isomorphism q8 : k (G) '−→
ℂ chosen.
To be speci�c, let’s consider ? (C) = C2 + 1. Then the value C (G) ∈ k (G) can be
±i ∈ ℂ.
For this reason it is confusing to draw a picture of the ℂ-valued points of A1

ℝ
, and

we shall try to avoid it...
(iii) The point G = (0) ∈ A1

ℝ
, i.e. the zero ideal. This is called the generic point of A1

ℝ
,

for a reason we shall see later. Its residue �eld is k (G) � ℝ(C), the fraction �eld
of � = ℝ[C]. The value C (G) ∈ k (G) � ℝ(C) is C (G) = C .
It is even less obvious how to draw the generic point. Often it is drawn as a blurb:

For the reasons explained above, in illustrations we shall usually just draw the set A1
ℝ
(ℝ)

of ℝ-valued points, or subsets of it.
More generally, when drawing an arbitrary scheme - , we shall usually pretend it is de-
�ned over ℝ, and then we’ll draw "the set - (ℝ) of ℝ-valued points of - ". This approach
is usually more instructive.
I will not talk about the Zariski topology of the space - := A1

ℝ
now, nor about the sheaf

of "functions" O- on - .
Let me only say that the points G ∈ - = A1

ℝ
corresponding to maximal ideals are closed,

i.e. the subset {G} ⊆ A1
ℝ

is closed. Hence, removing any �nite number of them gives an
open subset* ⊆ - .
The point G corresponding to the ideal (0) ⊆ ℝ[C] is dense, namely the closure of the set
{G} is the whole space A1

ℝ
. This is why it is called the generic point.

If we remove the origin, i.e. the point G0 ∈ A1
ℝ

s.t. C (G0) = 0, then the "function" C ∈ � =

ℝ[C] becomes invertible on the open set* := A1
ℝ
− {G0}, and the ring of "functions" on*

is the localization

(1.3.1) Γ(* ,O- ) = �C = �[C−1] = ℝ[C, C−1] .
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Exercise 1.3.2. Let (-,O- ) := A1
ℝ
= Spec(ℝ[C]).

(1) Let G ∈ - = A1
ℝ

be a closed point, and let* := - − {G}.
Try to say what is the ring of functions Γ(* ,O- ). (Hint: study the case G = G0
above, but now the maximal ideal m = G is generated by some irreducible monic
polynomial ? (C).)

(2) Now G1, . . . , G; are �nitely many distinct closed points in - , and * :=
- − {G1, . . . , G; }. Try to say what is the ring of functions Γ(* ,O- ).

Exercise 1.3.3. We know that the set of points of the a�ne scheme (-,O- ) := Spec(ℤ)
is the set of prime ideals in ℤ.
Try to say what are the residue �elds of the points G ∈ - . (Hint: look at the case of the
a�ne line A1

ℝ
, and make an analogy.)

Let G ∈ - be a closed point, i.e. the ideal G = m ⊆ ℤ is maximal, and let* := - − {G}. Try
to say what is the ring of functions Γ(* ,O- ). (Hint: make an analogy to formula (1.3.1).)

End of live Lecture 1

^ ^ ^

The material below is for self-reading before lecture 2. Some of it is pretty hard, and also
the exercises are hard. This material is optional only, meant to make the introduction
richer.
Consider the a�ne real line- := A1

ℝ
and the a�ne real plane . := A2

ℝ
. Writing� := ℝ[B]

and � := ℝ[B, C], we have - = Spec(�) and . = Spec(�).
Let 5 : . → - be the projection on the �rst coordinate.
Here is a picture, showing only the sets of real points - (ℝ) and . (ℝ).

(1.3.4)

The "coordinate axes" are meaningless in algebraic geometry, as is the limit B → ∞ that
the arrow tip on the B-axis indicates. I am drawing them only to help the imagination.
The e�ect of the projection 5 on functions is by pullback:
(1.3.5) 5 ∗ : � = ℝ[B] → � = ℝ[B, C], 5 ∗ (B) = B .

My picture seems to indicate that there is a well-de�ned function of sets 5 : . (ℝ) →
- (ℝ). This would make sense only if 5 (. (ℝ)) ⊆ - (ℝ), and the next exercise shows that
this is true.
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Exercise 1.3.6. Here - = A1
ℝ

and . = A2
ℝ

, 5 : . → - is the projection (1.3.4), and
q := 5 ∗ : �→ � is the ring homomorphism in formula (1.3.5).

(1) Suppose q ⊆ � is a prime ideal, with preimage p := q−1 (q) ⊆ �. Prove that p is a
prime ideal of �.
We shall learn later that this is the way the map 5 : . → - is recovered from the
ring homomorphism q . Namely, writing G := p and H := q, we have 5 (H) = G .

(2) Try to prove that if H = q is in. (ℝ) then G = p = 5 (H) = q−1 (q) is in- (ℝ). (Hint:
the ring homomorphism q : � → � induces an injective ℝ-ring homomorphism
q̄ : �/p→ �/q. The assumption H ∈ - (ℝ) says that �/q � ℝ as ℝ-rings. Deduce
that ℝ→ �/p is also an isomorphism.)

As we will learn later, the rule 5 ↦→ 5 ∗ gives a bijection between the set of maps of a�ne
ℝ-schemes 5 : . → - and the set of ℝ-ring homomorphisms 5 ∗ : �→ �.
For those familiar with categories, the precise statement is that Spec is a duality, namely
a contravariant equivalence, between the category of ℝ-rings and the category of a�ne
ℝ-schemes.
Next let / be the parabola in the plane with equation C2 = B .
Here is the set / (ℝ) sitting inside the plane . (ℝ) :

The ring of algebraic functions of / is
� := ℝ[B, C]/(C2 − B).

/ is an a�ne scheme too: / = Spec(�).
The projection 5 : . → - restrict to a map of a�ne schemes 5 : / → - .
The ring homomorphism

5 ∗ : � = ℝ[B] → � = ℝ[B, C]/(C2 − B)
is 5 ∗ (B) = B .
The projection 5 : / → - is "not nice" at the origin I0 ∈ / , or above the origin G0 ∈ - .
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(1.3.7)

This is seen in several ways.
First, the size of the �bers: the �ber 5 −1 (G0) is a single point I0, whereas all other �bers
5 −1 (G) have size 2 or 0. (Warning: we are only looking at the function 5 : / (ℝ) → - (ℝ)
between ℝ-valued points now.)
The second indication is that – when 5 : / (ℝ) → - (ℝ) is viewed as a map of di�eren-
tiable manifolds – the map 5 is not a local di�eomorphism only at I0. The induced linear
map on tangent spaces degenerates at I0. (This can also be stated in algebraic geometry).
Here is a third way to study the singularity of 5 at I0.
In algebraic geometry the �ber of a map of schemes is a scheme. We will study this much
later.
Here is the formula in our situation. Take a point G ∈ - (ℝ), and look at the ring
(1.3.8) �G := � ⊗� k (G).
The �ber of 5 above G is the a�ne scheme
(1.3.9) /G := Spec(�G ).

Exercise 1.3.10. Calculate the ring �G for G ∈ - (ℝ) in the following cases.
(1) B (G) > 0. You should get �G � ℝ×ℝ � k (I−) × k (I+), where 5 −1 (G) = {I−, I+}.
(2) G = G0 is the origin. Here you should get�G � ℝ[C]/(C2). The element C ∈ �G is a

nonzero nilpotent, and this is called rami�cation. It is the algebraic indication of
singularity.

(3) B (G) < 0. You should get �G � ℂ � k (I), where 5 −1 (G) = {I}. The point I is not
in / (ℝ), and this is why in our picture (1.3.7) the �ber 5 −1 (G) looks empty.
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Lecture 2, 28 Oct 2020

2. Category Theory

This concept is going to be extremely important for us, and some students are not familair
with it.

I prepared too much material for one lecture, so most likely we will continue with it into
lecture 3.

2.1. Categories.

De�nition 2.1.1. A category C is a mathematical system consisting of:
• A set Ob(C), called the set of objects of C.

• For every pair �0,�1 ∈ Ob(C), there is a set HomC (�0,�1), called the set of mor-
phisms from �0 to �1.

• For every triple �0,�1,�2 ∈ Ob(C), there is a function

◦ : HomC (�1,�2) × HomC (�0,�1) → HomC (�0,�2)

called composition.

• For every � ∈ Ob(C), there is a morphism

id� ∈ HomC (�,�) ,

called the identity morphism.

These are the axioms:
⊲ Composition is associative: given objects �0,�1,�2,�3 ∈ Ob(C) and morphisms
58 ∈ HomC (�8−1,�8 ), there is equality

53 ◦ (52 ◦ 51) = (53 ◦ 52) ◦ 51 ∈ HomC (�0,�3).

⊲ The identity morphisms are neutral for composition: for every 5 ∈ HomC (�0,�1)
there is equality

5 ◦ id�0 = 5 = id�1 ◦ 5 .

We usually write 5 : � → � to mean that 5 ∈ HomC (�, �).

Another notational convention is to write � ∈ C instead of � ∈ Ob(C).

De�nition 2.1.2. A morphism 5 : � → � in a category C is called an isomorphism if
there is a morphism 6 : � → � such that 6 ◦ 5 = id� and 5 ◦ 6 = id� .

Exercise 2.1.3. Let �, � ∈ C.
(1) Prove that id� is an isomorphism in C. (For this reason we call it the identity

automorphism of the object � .)
(2) Suppose 5 : � → � is an isomorphism in C. Prove that there is exactly one

morphism 6 : � → � in C satisfying 6 ◦ 5 = id� and 5 ◦ 6 = id� . (For this reason
we call 6 the inverse of 5 , and denote t by 5 −1.)
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Example 2.1.4. The category Set has all sets as its objects. The morphisms 5 : - →
. between -,. ∈ Ob(Set) are the functions. The identity morphisms are the identity
functions, and composition is the usual one.

Remark 2.1.5. The example above brings us to a variant of Russell’s Paradox: is the set
- := Ob(Set) an element of itself?
There are two main ways to avoid this set-theoretical di�culty. Both work by installing
a size hierarchy among sets.

(1) Modify De�nition 2.1.1, declaring that Ob(C) is a class. This requires de�ning
"class", and this is done in the von Neumann – Bernays – Gödel set theory.

(2) Choose a Grothendieck universe U, which is some big set. Elements of U are called
small sets. Then declare that Ob(C) ⊆ U and HomC (�, �) ∈ U.

We will take the second way. Thus, for us (implicitly) Set is the category of small sets.
As usual with foundations, these issues are not really important or interesting. It is the
algebraic properties of categories (and functors, etc.) that are interesting and useful.
Students who want to read more about these matters can look in [Mac2, Chapter I].

Example 2.1.6. Fix a ring �. The category Mod� of �-modules has all �-modules as its
objects. (Regarding size: as in Remark 2.1.5: the ring� and the modules" are small sets.)
The morphisms q : " → # between ", # ∈ Ob(Mod�) are the �-module homomor-
phisms. The identity morphisms are the identity functions, and composition is the usual
one.

Example 2.1.7. Let q : " → # be an �-module homomorphism, i.e. a morphism in
Mod�.
Consider this diagram

(2.1.8) "

c

����

q
// #

"/Ker(q)
q̄

'
// Im(q)
OO

n

OO

in the category Mod�.
It consists of four objects and four morphisms. The vertical morphisms are the canonical
surjection c and the inclusion n . The bottom isomorphism q̄ is the canonical one.
This diagram is commutative. By this we mean that the two morphisms we get from "

to # , namely q and the composition of the other three morphisms, are equal.

Example 2.1.9. The category Rng of (commutative) rings has all rings as its objects.
The morphisms 5 : � → � between �, � ∈ Ob(Rng) are the ring homomorphisms. The
identity morphisms are the identity functions, and composition is the usual one.

Example 2.1.10. Let � be a ring.
The category of �-rings is just like the category of ℝ-rings we mentioned earlier.
Namely, an �-ring a ring �, equipped with a ring homomorphism q� : �→ �, called the
structural homomorphism.
If� is another�-ring, then an�-ring homomorphismk : � → � is a ring homomorphism
such thatk ◦ q� = q� .
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In other words, the diagram

�

q�

$$

q�

��

�
k

// �

in Rng is commutative.

The category of �-rings is denoted by Rng/�.

De�nition 2.1.11. Let C be a category.
(1) An object �0 ∈ C is called an initial object if for every � ∈ C there is exactly one

morphism �0 → � .
(2) An object�∞ ∈ C is called a terminal object if for every� ∈ C there is exactly one

morphism � → �∞� .

Exercise 2.1.12. Prove that any two initial objects of a category C are uniquely isomor-
phic. Likewise for terminal objects.

Exercise 2.1.13.

(1) Let � be a ring. Show that there is exactly one ring homomorphism ℤ → �.
Conclude that ℤ is the initial object of the category Rng.

(2) Find the terminal object of Rng.

Example 2.1.14. The category of groups Grp has groups as its objects and group homo-
morphisms as its morphisms.

Example 2.1.15. The category of abelian groups Ab has abelian groups as its objects, and
group homomorphisms as its morpisms.

Example 2.1.16. The category of topological spaces Top has topological spaces as its
objects, and continous maps homomorphisms as its morphisms.

Exercise 2.1.17. Find the initial and terminal objects of Grp, Ab and Top.

The categories in the previous examples have large sets of objects (in the sense that
Ob(C) ⊆ U, see Remark 2.1.5). But it very instructive to look at categories with very
few objects.

Example 2.1.18. Take a group� . De�ne a category G as follows: there is a single object,
say G ; so that Ob(G) = {G}. The morphisms 6 : G → G are the elements of � , i.e.
HomG (G, G) := � . The identity morphism is idG := 4 ∈ � , the unit element of � ; and
composition is the multiplication of � .

Likewise:

Example 2.1.19. Take a ring �. De�ne a category A as follows: there is a single ob-
ject, say G ; so that Ob(A) = {G}. The morphisms 0 : G → G are the elements of �,
i.e. HomA (G, G) := � . The identity morphism is idG := 1 ∈ �, and composition is the
multiplication of �.
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2.2. Functors. If� and� are groups, we can talk about group homomorphisms q : � →
� . Likewise, if � and � are rings, we can talk about ring homomorphisms 5 : �→ �.
It raises the question: Is there an analogous concept of “homomorphism” between cate-
gories?

De�nition 2.2.1. Let C and D be categories. A functor

� : C→ D

consists of a function
�ob : Ob(C) → Ob(D),

and for every pair of objects �0,�1 ∈ Ob(C) a function
��0,�1 : HomC (�0,�1) → HomD

(
�ob (�0), �ob (�1)

)
.

There are two conditions:
(i) Identities: ��,� (id� ) = id�ob (�) .

(ii) Composition: For all�0,�1,�2 ∈ Ob(C) and q8 ∈ HomC (�8−1,�8 ) there is equality
��1,�2 (q2) ◦ ��0,�1 (q1) = ��0,�2 (q2 ◦ q1).

Usually we suppress the subscripts from �ob and ��0,�1 .

Exercise 2.2.2. Let � and � be groups, with corresponding single-object categories G
and H, as in Example 2.1.18. Show that there is a canonical bijection between group
homomorphisms q : � → � and functors � : G→ H.

Many functors are “forgetful functors”. Here is the protoypical example.

Example 2.2.3. The forgetful functor
� : Grp→ Set

sends a group � to its underlying set, and a group homomorphism q to the function
between the underlying sets.

Exercise 2.2.4. Functors can be composed. The exercise is to write the precise formulas
for the composition � ◦ � of a functor � : C→ D with a functor � : D→ E.

De�nition 2.2.5. Let � : C→ D be a functor between categories. The functor � is called
faithful (resp. full) if for every pair of objects �0,�1 ∈ Ob(C) the function

� : HomC (�0,�1) → HomD
(
� (�0), � (�1)

)
is injective (resp. surjective).

Forgetful functors (such as in Example 2.2.3) are faithful.

De�nition 2.2.6. Let C be a category. A subcategory C′ of C consists of a subset
Ob(C′) ⊆ Ob(C),

and for every pair of objects �0,�1 ∈ Ob(C′) a subset
HomC′ (�0,�1) ⊆ HomC (�0,�1).

The conditions are:
(i) Identities: id� ∈ HomC′ (�,�) for every � ∈ Ob(C′).
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(ii) Composition: For all �0,�1,�2 ∈ Ob(C′) and q8 ∈ HomC′ (�8−1,�8 ), we have

q2 ◦ q1 ∈ HomC′ (�0,�2).

Clearly C′ is itself a category, with the identity and composition of C; and the inclusion
� : C′→ C is a faithful functor.

De�nition 2.2.7. Let C be a category and let C′ ⊆ C be a subcategory. We say that C′ is
a full subcategory of C if

HomC′ (�0,�1) = HomC (�0,�1)

for all �0,�1 ∈ Ob(C′).

In other words, C′ is a full subcategory of C if the inclusion functor � : C′→ C is full.

Example 2.2.8. The category Ab is a full subcategory of Grp.

Exercise 2.2.9.
(1) Find a functor � : C→ D that is full but not faithful.

(2) Find a functor � : C→ D that is faithful but not full.

End of live Lecture 2

^ ^ ^

The material below is for self-reading before lecture 3. (I just talked about it brie�y during
the live lecture.)

Exercise 2.2.10. Let � be a nonzero ring.

Show that there is a functor
� : Set→ Mod�

that sends an object - to the free module � (- ) with basis - ,

and it sends a function 5 : - → . to the unique �-module homomorphism � (5 ) that
makes the diagram of sets

-

⊆
��

5
// .

⊆
��

� (- )
� (5 )

// � (. )
is commutative. Here the vertical arrows are the inclusions.

This is called the free module functor.

Exercise 2.2.11. Let � be a nonzero ring.

The category of �nite sets is Setf .

Show that there is a functor
� : Setf → Rng/�

that sends an object - to the polynomial ring �[- ] in the set of variables - ,
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and it sends a function 5 : - → . to the unique �-ring homomorphism � (5 ) that makes
the diagram of sets

-

⊆
��

5
// .

⊆
��

� (- )
� (5 )

// � (. )
is commutative. Here the vertical arrows are the inclusions.
This is called the polynomial ring functor.

Later we will explain how the functors � from the last two exercises are related to the
corresponding forgetful functors.
Here are two examples of functors from Mod� to itself. (For those who need a reminder
of tensor products, see Section 8 in [Ye2].)

Example 2.2.12. Fix " ∈ Mod�. There is a functor
� : Mod�→ Mod�

such that
� (# ) = " ⊗� #

on objects,
and on a morphismk : # → # ′ in Mod� it is

� (k ) = id" ⊗k : � (# ) = " ⊗� # → � (# ′) = " ⊗� # ′.

Example 2.2.13. Fix " ∈ Mod�. There is a functor
� : Mod�→ Mod�

such that
� (# ) = Hom� (", # )

on objects, and on a morphismk : # → # ′ it is
� (k ) = Hom(id" ,k ) : � (# ) = Hom� (", # ) → � (# ′) = Hom� (", # ′) .

Here
Hom(id" ,k ) (j) := k ◦ j : " → # ′

for j ∈ Hom� (", # ).

Example 2.2.14. Suppose we try to change things around in the previous example;
namely we �x # ∈ Mod�, and we try to de�ne a functor

� : Mod�→ Mod�

such that
� (") = Hom� (", # )

on an object " ∈ Mod�.
The only formula that seems to make sense for a morphism q : " → " ′ is

� (q) = Hom(q, id# ) : Hom� (" ′, # ) → Hom� (", # ),
where

Hom(q, id# ) := j ◦ q : " → # ′

for j ∈ Hom� (" ′, # ).
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But this is a homomorphism
� (q) : � (" ′) → � (").

It is in the wrong direction! What to do?

The answer is: a new de�nition.

De�nition 2.2.15. Let C and D be categories. A contravariant functor

� : C→ D

consists of a function
� : Ob(C) → Ob(D),

and for every pair of objects �0,�1 ∈ Ob(C) a function
� : HomC (�0,�1) → HomD

(
� (�1), � (�0)

)
.

There are two conditions:
(i) Identities: � (id� ) = id� (�) .

(ii) Composition, reversed: For all �0,�1,�2 ∈ Ob(C) and q8 ∈ HomC (�8−1,�8 ) there
is equality

� (q1) ◦ � (q2) = � (q2 ◦ q1)
in HomD

(
� (�2), � (�0)

)
.

An ordinary functor (De�nition 2.2.1) is sometimes called a covariant functor.
Next week we will talk about natural transformations.

End of Lecture 2
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Lecture 3, 4 Nov 2020

Today we will learn abouit natural transformations, opposite categories and equivalences
of categories. If time permits we will start talking about sheaves of rings of functions. [In
fact we did less than promised.]

2.3. Natural Transformations. Functors go from one category to another category,
just like group homomorphism go from one group to another group.

But in the world of categories there is another level: something that goes from one functor
to another functor; these are the natural transformations in the next de�nition.

De�nition 2.3.1. Let C and D be categories and let �,� : C→ D be functors. A natural
transformation (sometimes called a morphism of functors)

[ : � → �

is a collection
[ = {[� }�∈Ob(C)

of morphisms
[� : � (�) → � (�)

in D, such that for every morphismk : �0 → �1 in C the diagram

(†) � (�0)

[�0

��

� (k )
// � (�1)

[�1

��

� (�0)
� (k )

// � (�1)

in D is commutative.

Here are some examples / exercises.

Example 2.3.2. This is a variation of Example 2.2.12. The source and target categories
are both Mod� here. Fix a homomorphism q : ! → " in Mod�. Consider the �-linear
functors

�! : Mod�→ Mod�, �! := ! ⊗� (−)
and

�" : Mod�→ Mod�, �" := " ⊗� (−)
as in that example.

For every module # there is a homomorphism

[# : �! (# ) = ! ⊗� # → �" (# ) = " ⊗� #,

namely
[# := q ⊗ id# : ! ⊗� # → " ⊗� # .

I claim that [ = {[# }# ∈Mod� is a natural transformation [ : �! → �" . For this I must
verify that diagram (†) in De�nition 2.3.1 is commutative, for every morphismk : #0 →
#1 in the source category.
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Take an arbitrary homomorphismk : #0 → #1. We need to prove that the diagram

�! (#0) = ! ⊗� #0

[#0

��

�! (k )
// �! (#1) = ! ⊗� #1

[#1

��

�" (#0) = " ⊗� #0
�" (k )

// �" (#1) = " ⊗� #1

in Mod� is commutative.

This means that we have to prove that for every element D ∈ ! ⊗� #0 there is equality

(2.3.3) ([#1 ◦�! (k )) (D) = (�" (k ) ◦ [#0 ) (D)

in ! ⊗� #1.

Because both functions

[#1 ◦�! (k ), �" (k ) ◦ [#0 : ! ⊗� #0 → " ⊗� #1

are�-linear, it is enough to verify (2.3.3) for a pure tensorD = ; ⊗=, with ; ∈ ! and = ∈ #0.

Now
([#1 ◦�! (k )) (; ⊗ =) = [#1 (; ⊗k (=)) = q (;) ⊗k (=)

and
(�" (k ) ◦ [#0 ) (; ⊗ =) = �" (k ) (q (;) ⊗ =) = q (;) ⊗k (=).

These are equal, as claimed.

De�nition 2.3.4. Let C and D be categories and let �,� : C→ D be functors. A natural
transformation [ : � → � is called a natural isomorphism if for every object � ∈ C the
morphism [� : � (�) → � (�) in D is an isomorphism

Exercise 2.3.5. In the situation of Example 2.3.2, prove that the following two conditions
are equivalent:

(i) q : ! → " is an isomorphism of �-modules.
(ii) [ : �! → �" is a natural isomorphism (an isomorphism of functors).

Exercise 2.3.6. Let C and D be categories, let �,� : C → D be functors, and let [ :
� → � be a natural transformation. Assume that every morphism in the category D is an
isomorphism. (Such a category is called a groupoid.) Prove that[ is a natural isomorphism.

Example 2.3.7. Let � and � be groups, with corresponding single-object categories G
and H, say with Ob(G) = {G} and Ob(H) = {H}. See Example 2.1.18.

Letq,k : � → � be group homomorphisms, that we view (as in Exercise 2.2.2) as functors
�q , �k : G→ H. Namely �q (G) = H and �q (6) = q (6), etc.

Given an element ℎ ∈ � , let Ad(ℎ) be the automorphism of � which is conjugation by ℎ,
namely Ad(ℎ) (5 ) := ℎ · 5 ·ℎ−1 for all 5 ∈ � .

Suppose there is a natural transformation [ : �q → �k .

Note that [ is automatically a natural isomorphism, by Exercise 2.3.6 (since H is a
groupoid).
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For every morphism 6 : G → G in G, i.e. 6 is an element of � , we have a commutative
diagram

(2.3.8) �q (G) = H

[G

��

�q (6)
// �q (G) = H

[G

��

�k (G) = H
�k (6)

// �k (G) = H

in H.

Now [G is a morphisn H → H in the category H, so [G = ℎ for some element ℎ ∈ � . Also
�q (6) = q (6) ∈ � and �k (6) = k (6) ∈ � . So diagram (2.3.8) becomes

(2.3.9) �q (G) = H

[G=ℎ

��

�q (6)=q (6)
// �q (G) = H

[G=ℎ

��

�k (G) = H
�k (6)=k (6)

// �k (G) = H

Recall that the operation of composition in H is multiplication in the group � . We see
that the condition of commutativity of diagram (2.3.8) in the category H is the same as
equality

(2.3.10) ℎ ·q (6) = k (6) ·ℎ
in � .

Multiplying both sides of (2.3.10) by ℎ−1 on the right we get this equality

(2.3.11) k (6) = ℎ ·q (6) ·ℎ−1

in the group � . But
ℎ ·q (6) ·ℎ−1 = (Ad(ℎ) ◦ q) (6).

Thus equality (2.3.11) for all 6 ∈ � says that

(2.3.12) k = Ad(ℎ) ◦ q.
as group homomorphisms � → � .

This argument can also be reversed.

The conclusion is that the functors �q and �k are naturally isomorphic i� q and k are
related by an inner automorphism, as in (2.3.12).

Proposition 2.3.13. Let C and D be categories, let �,�, � : C → D be functors, and let
[ : � → � and \ : � → � be natural transformations. Then the collection

\ ◦ [ := {\� ◦ [� }�∈Ob(C)

is a natural transformation � → � .

Exercise 2.3.14. Prove this proposition.

A functor � : C→ D has its identity natural automorphism id� : � → � , de�ned a follows:
for each object � of C it is

(id� )� := id� (�) : � (�) '−→ � (�),
the identity automorphism of the object � (�) in D.
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Proposition 2.3.15. Let C and D be categories, let �,� : C → D be functors, and let
[ : � → � be a natural transformation. TFAE:

(i) [ is a natural isomorphism (De�nition 2.3.4).

(ii) There is a natural transformation Z : � → � such that Z ◦ [ = id� and [ ◦ Z = id� .

Moreover, if these equivalent conditions hold, then Z is also a natural isomorphism, it is
unique, and it is called the inverse of [.

Exercise 2.3.16. Prove this proposition. (Hint: it is easy, after you understand what it
says.)

End of live Lecture 3

^ ^ ^

The material below is for self-reading before lecture 4 (I just talked about it brie�y during
the live lecture). There are a few exercises, and some are hard.

Recall that a �nitely generated abelian group " has as direct sum decomposition

(2.3.17) " � � ⊕ ),

where � is a free abelian group, i.e. � � ℤA for some A ∈ ℕ, and) is a �nite abelian group.
(The letters "F" and "T" stand for "free" and "tosrsion", respectively.)

The next exercise gives meaning to the statement “the torsion subgroup of an abelian is
not naturally a direct summand of the group”.

Exercise 2.3.18. We work in the category Abfg = Modf ℤ of �nitely generated abelian
groups. It is a full subcategory of Ab.

Given a �nitely generated abelian group " , let ) (") ⊆ " be the subgroup of torsion
elements (i.e. the elements of �nite order).

(1) Prove that ) : Abfg → Abfg is a functor.

(2) Let Id be the identity functor of the category Abfg. Prove that the inclusions

n" : ) (") → ",

for " ∈ Abfg, assemble to a natural transformation

n = {n" }" ∈Abfg : ) → Id

of functors from Abfg to itself.

(3) (Hard) Prove that there does not exist a natural transformation f : Id → ) of
functors from Abfg to itself, such that f ◦n = id) as natural transformations from
the functor ) to itself (i.e. for every " the homomorphism f" ◦ n" : ) (") →
) (") is the identity id) (") .)

Hint for (3): Find a counterexample, as follows.

Given " ∈ Abfg, there is a short exact sequence

(2.3.19) 0→ ) (") n"−−→ "
c"−−→ � (") → 0

in Abfg. Here � (") := "/) ("), and this is a free abelian group.

22 | �le: notes-201112b



Course Notes | Amnon Yekutieli | 12 Nov 2020

Suppose f" : " → ) (") is a homomorphism satisfying f" ◦ n" = id) (") . Then there
is an induced splitting of the short exact sequence (2.3.19). This means that there is an
isomorphism
(2.3.20) (f" , c" ) : " '−→ ) (") ⊕ � (")
and it �ts into this commutative diagram with exact rows:

(2.3.21) 0 // ) (") n" //

id'
��

"
c" //

(f" ,c" )'
��

� (") //

id'
��

0

0 // ) (")
(id,0)

// ) (") ⊕ � (")
(0,id)

// � (") // 0

Let’s assume that a natural transformationf : Id→ ) is given, satisfyingf"◦n" = id) (")
for every " . We want to produce a contradiction.
The way to do it is to �nd an abelian group " , and an automorphism k of " that does
not respect the direct sum decomposition (2.3.20) induced by f" .
Try to do this for abelian group " := ℤ ⊕ (ℤ/(2)). End of hint.
I will post a solution for item (3) before the next lecture (please remind me!).

The next exercise gives meaning to the statement “the center of a group is not a functor”.

Exercise 2.3.22. (Hard) We work in the category Grp of groups. Given a group � , let
Cent(�) ⊆ � be the center.
Prove that there does not exist a functor� : Grp→ Grp, together with a natural transfor-
mation W : � → Id, such that for every group� we have � (�) = Cent(�), and the group
homomorphism

W� : � (�) = Cent(�) → Id(�) = �
is the inclusion. (Hint: look for an abelian group " that’s a subgroup of a nonabelian
group � , but " is not in the center of � . You can �nd such � of size 6.)

Opposite categories and equivalences will be discussed next week. Then we will introduce
sheaves of rings of functions. Adjoint functors will be postponed until later (too much
abstract material at once in confusing).

End of Lecture 3
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Lecture 4, 11 Nov 2020

Today we are going to �nish the �rst discussion of category theory. We will return to the
concept of adjoint functors later, when it will be needed. By then we should be so �uent
in category theory that this confusing concept will be digestible (I hope – frankly, I never
really understood it well!).

2.4. Opposite Categories.

De�nition 2.4.1. Given a category C, its opposite category Cop has the same objects, but
its arrows and their compositions are reversed

Let me describe this in detail.
First, de�ne the set of objects of the new category Cop to be
(2.4.2) Ob(Cop) := Ob(C).

The identity automorphism of the set Ob(C) is now written as a bijection
(2.4.3) Op : Ob(C) '−→ Ob(Cop).

Now to morphisms. Given a pair of objects �0,�1 ∈ Ob(C), we let
(2.4.4) HomCop

(
Op(�1),Op(�0)

)
:= HomC

(
�0,�1

)
.

There is a bijection of sets (the identity automorphism in disguise)
(2.4.5) Op : HomC

(
�0,�1

) '−→ HomCop
(
Op(�1),Op(�0)

)
.

This means that every morphismk : �1 → �0 in Cop can be expressed ask = Op(q) for
a unique morphism q : �0 → �1 in C, with �8 = Op(�8 ).
The composition ◦op of Cop is as follows. Given morphisms k2 : �2 → �1 and k1 :
�1 → �0 in Cop, let’s express them as k8 = Op(q8 ), for morphisms q8 : �8−1 → �8 , with
�8 = Op(�8 ).
Then the composition in Cop is
(2.4.6) k1 ◦op k2 = Op(q1) ◦op Op(q2) := Op(q2 ◦ q1).

In diagrams: �rst the commutative diagram of the composition in C.

�0
q1

//

q2 ◦q1

$$

�1
q2

// �2

Now the commutative diagram of the composition in Cop.

�2 = Op(�2)
k2 =Op(q2)

//

k1 ◦k2 =Op(q2◦q1)

))

�1 = Op(�1)
k1 =Op(q1)

// �0 = Op(�0)

Lastly, the identity automorphism of an object � ∈ Cop is the same as in C, but we can
also write as
(2.4.7) id� := Op(id� ).

Exercise 2.4.8. Let C be a category.
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(1) Prove that Cop is indeed a category, with set of objects (2.4.2), sets of morphisms
(2.4.4), composition (2.4.6) and identities (2.4.7).

(2) Prove that Op : C→ Cop is a contravariant functor.

Proposition 2.4.9. Let C and D be categories. The formula � ↦→ � ◦Op is a bijection from
the set of contravariant functors � : C → D to the set of (ordinary, or covariant) functors
Cop → D.

Exercise 2.4.10. Prove Prop 2.4.9.

Since we often have several categories under discussion, we may decorate the opposite
functor of C like this:
(2.4.11) OpC : C→ Cop .

Exercise 2.4.12. Let C be a category. Prove that
OpCop ◦OpC = IdC .

(These are functors from C to itself.)

From now on we will usually deal only with (covariant) functors. Whenever we encounter
a contravariant functor, we make it covariant be replacing the source category with its
opposite; this is justi�ed by Proposition 2.4.9. For instance:

Example 2.4.13. Let C be a category and � ∈ C. Then HomC (−,�) is a contravariant
functor C→ Set, but we prefer to see it a (covariant) functor

HomC (−,�) : Cop → Set .

Remark 2.4.14. Given a "concrete" category, such as C = Mod(�) for a ring �, it is
interesting to know "how concrete" the opposite category Cop is.
Here is a result, probably due to P. Freyd (it is an exercise in a book of his). Suppose� is a
nonzero NC (i.e. not necessarily commutative) ring, and Mod(�) is the category of left�-
modules. Then there does not exist a linear equivalence of categories between Mod(�)op

and Mod(�), for any NC ring �. (An equivalence � : Mod(�)op → Mod(�) is linear if
it respects the abelian group structures on morphisms in Mod(�)op and in Mod(�).) See
[Ye1, Remark 2.7.20].
There is a complete (but hard) proof for the case of � = ℤ in [Ye1, Example 2.7.21].

^ ^ ^

De�nition 2.4.15. Given a noncommutative ring �, its opposite ring �op has the same
underlying ℤ-module as �, the same unit element, but the multiplication ·op is the re-
versed:

op(01) ·op op(00) := op(00 · 01).
Here op : �→ �op is the identity automorphism of the ℤ-module �.

The ℤ-linear bjection op : �→ �op is a ring anti-automorphism. Of course � = �op i� �
is a commutative ring.

Example 2.4.16. Some noncommutative rings are isomorphic to their opposites.
Let � be a nonzero commutative ring, = ≥ 2 and � := Mat= (�). Then � is a NC ring.
Transposition is a NC ring isomorphism �

'−→ �op.
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Example 2.4.17. Let � be a nonabelian group. Then 6 ↦→ 6−1 is a group isomorphism
q : � → �op.

Example 2.4.18. Given a NC ring �, we can make it into a single-object category A, say
Ob(A) = {G}, such that EndA (G) = �. Cf. Example 2.1.19.
Then the category corresponding to the opposite NC ring �op is the opposite category
Aop.

2.5. Equivalences of Categories.

De�nition 2.5.1. A functor � : C → D is called an equivalence if there is a functor
� : D→ C, and isomorphisms of functors [ : � ◦ � '−→ IdC and Z : � ◦� '−→ IdD.
The functor � is called a quasi-inverse of � .

It is very important to note that an equivalence � does not induce a bijection Ob(C) →
Ob(D). We will give the precise statement about that later.

Example 2.5.2. Consider the category Set of sets, its full subcategory Set�n of �nite sets,
and the full subcategory C ⊆ Set�n on the set of objects {(8 }8∈ℕ, where

(8 := {1, . . . , 8} ⊆ ℕ.

Thus |(8 | = 8 , and in particular (0 = ∅.
The inclusion functor

� : C→ Set�n

turns out to be an equivalence.
To construct a quasi-inverse

� : Set�n → C
we use the axiom of choice on the (big!) set Ob(Set�n). For every �nite set) of cardinality
8 := |) | we choose an isomorphism

Z) : (8 '−→ )

in Set�n. In case ) = (8 we choose Z) := id) .
The functor � is de�ned on objects by � () ) := (8 where 8 := |) |.
For a morphism q : ) → * in Set�n we de�ne

� (q) := Z −1
* ◦ q ◦ Z) .

This makes the diagram

(8 = � () )

Z) '
��

� (q)
// ( 9 = � (* )

Z*'
��

) = IdSet�n () )
q
// * = IdSet�n (* )

commutative.
We see that

Z := {Z) }) ∈Ob(Set�n) : � ◦� '−→ IdSet�n

is an isomorphism of functors.
And by construction we have

[ := idIdC : � ◦ � '−→ IdC,

and of course this is also an isomorphism of functors.
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Exercise 2.5.3. In the setting of Example 2.5.2, prove that � is a functor, and that it is a
quasi-inverse of � .

Exercise 2.5.4. In the setting of Example 2.5.2, �nd two di�erent quasi-inverses �0,�1
of � , and �nd an isomorphism of funtors j : �0

'−→ �1.

Exercise 2.5.5. Let � be a �eld.
We shall use the notation Mod(�) for the category of �-modules, and Modf (�) for its
full subcategory of �nitely generated modules. (See Remark 2.5.6 below on terminology
and notation).
State and prove the equivalence, analogous to that of Example 2.5.2 between Modf (�),
and its full subcategory M on the set of objects {"8 }8∈ℕ, where "8 := �8 .

Remark 2.5.6. Here is a side remark on terminology. Most people stick to an amusing
tradition and refer to �-modules as vector spaces; I think this is silly, and they (most
people) think I am crazy.
I have a reason though: "vector space" indicates some kind of geometric quality, and this
is almost always absent from �-module. When we get to vector bundles there will indeed
be geometry!
Simiarly, in the theory of Lie algebras, the object g is both a �-module (abstract) and a
scheme (isomorphic to A=

�
for some =). – Lie groups –

Remark 2.5.7. There is much stronger notion of isomorphism of categories. This is a
functor � : C → D which is bijective on objects and on morphisms. An isomorphism �

has an inverse isomorphism � : D→ C, and this � is unique.
If � is an isomorphism of categories, then it is an equivalence; but not vice verse, as
Example 2.5.2 shows.
This is analogous to topology, where a homeomorphism 5 : - → . is stronger than a
homotopy equivalence.
The inclusion 5 of the origin in the plane - = {G0} into the closed unit disc . is an
example of a homotopy equivalence that is not a homeomorphism.

A functor � : C → D is called fully faithful if it is full and faithful; i.e. for every pair of
objects �0,�1 ∈ C the function

� : HomC (�0,�1) → HomD (� (�0), � (�1))
is bijective.
The functor � is said to be essentially surjective on objects if for every object � ∈ D there
exists some object � ∈ C and an isomorphism � (�) '−→ � in D.

Theorem 2.5.8. Let � : C→ D be a functor. TFAE:
(i) � is an equivalence.

(ii) � is fully faithful and essentially surjective on objects.

Exercise 2.5.9. Prove Theorem 2.5.8. (Hint: Study Example 2.5.2.)

End of live Lecture 4
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^ ^ ^

Here are the solutions of the hard problems from last week.

Solution 2.5.10 (of Exercise 2.3.18(3)). The solution is much more di�cult than I thought...
As hinted, we are going to assume that a natural transformation f : Id → ) of functors
from Abfg = Modf (ℤ) to itself is given, and deduce a contradiction.
Let " be some object of Modf (ℤ), and let k be some endomorphism of " . Because
f : Id→ ) is a natural transformation, we have a commutative diagram

(2.5.11) " = Id(") f" //

k=Id(k )
��

) (")

) (k )
��

" = Id(") f" // ) (")
This means that
(2.5.12) ) (k ) ◦ f" = f" ◦k
as homomorphisms " → ) (").
Likewise, Because c : Id → � is a natural transformation, we have a commutative dia-
gram

(2.5.13) " = Id(") c" //

k=Id(k )
��

� (")

� (k )
��

" = Id(") c" // � (")
This means that
(2.5.14) � (k ) ◦ c" = c" ◦k
as homomorphisms " → � (").
Putting (2.5.12) and (2.5.14) together we get the following commutative diagram

(2.5.15) "
(f" ,c" )
'

//

k

��

) (") ⊕ � (")

() (k ),� (k ))
��

"
(f" ,c" )
'

// ) (") ⊕ � (")

This says that k must respect the direct sum decomposition (2.3.20), which we repeat
here:
(2.5.16) (f" , c" ) : " '−→ ) (") ⊕ � (").

To �nish, we will producek : " → " that does not respect its direct sum decomposition
(2.5.16).
Take
(2.5.17) " := ℤ ⊕ (ℤ/(2)) .
Then � (") � ℤ and ) (") � ℤ/(2).
Let< ∈ ) (") be its unique generator, and let = ∈ � (") be one of its two generators.
Because � (") is a free ℤ-module with basis =, there is a unique homomorphism k� :
� (") → " s.t.k� (=) =<. Letk) : ) (") → " be the zero homomorphism.
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Combined we get a homomorphism
(2.5.18) k := (k) ,k� ) ◦ (f" , c" ) : " → ".

Here is howk �ts into a commutative diagram:

(2.5.19) "
(f" ,c" )
'

//

k

((

) (") ⊕ � (")

(k) ,k� )
��

"

But the endomorphismk satis�esk (=) =<, so it does not respect the direct sum decom-
position (2.5.16). QED.

Solution 2.5.20 (of Exercise 2.3.22). This is much easier!
Let � be the dihedral group �3, which is also the symmetry group (3 of the set {1, 2, 3}.
This is (the only?) a nonabelian group of order 6. Let � := �2 = ℤ/(2) and  := �3 =

ℤ/(3). There is an action of � on  by group automorphisms, and there are embeddings
\ : � � � and  � � , such that � � � n  , a semi-direct product.
Since � is abelian, it center is Cent(� ) = � . On the other hand Cent(�) = {4}.
If we had a functor � : Grp → Grp, together with a natural transformation W : � → Id,
such that for every group � we have � (�) = Cent(�), and the group homomorphism

W� : � (�) = Cent(�) → Id(�) = �
is the inclusion, there would be a commutative diagram

(2.5.21) � (� ) = �
W�=incl

//

� (\ )
��

�

\=incl
��

� (�) = {4}
W�=incl

// �

in Grp, in which the arrows marked "incl" are the inclusions, so they are injective. This
implies that� (\ ) is an injective group homomorphism, from a group of order 2 to a group
of order 1. QED.

End of Lecture 4
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