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Lecture 1, 21 Oct 2020 \

1. INTRODUCTION

1.1. Administration and Prerequisites. First a few words on the format of the course.
The course will be held via the ZOOM video service, on Wednesdays at 12:10 - 14:00.

Formal registration is not required, unless you want a grade (pass/fail). Passing the course
requires attending all lectures and submitting most of the HW (preferably typed).

However I expect all participants to attend all the course meetings (virtually, with cameras
on), after the first two trial meetings.

The homework exercises are included in the course notes.

If you have not done so yet, please email me your name, academic status, and relevant
mathematical knowledge.

Each week (usually on Tuesday) I will send an email with the zoom link for that week’s
lecture, and a draft of the typed lecture notes. A corrected version of the notes will be
uploaded to the course web page after the lecture.

Participants are welcome to ask questions in real time (by unmuting your microphone),
or by email to me or to Dr. Mattia Ornaghi (a postdoc who will assist me).

o 0 0

Now a few words on prerequisites.
I expect all participants to have good knowledge of abstract topology.

We shall use categories and functors a lot. Since some students are not familiar with this
topic (unfortunately), we will learn it quickly next week (with the help of homework).

Some commutative algebra is essential, like prime ideals, tensor products (of rings and
modules), and localization.

Some understanding of differential geometry is needed, mostly for use in examples.

Galois theory will be used in examples. Knowing it is very useful, but not crucial, for this
course.

1.2. On Geometry. Let me say a few words on geometry.

By geometry I mean the mathematical study of spaces that have more structure than topo-
logical spaces. Usually (in modern mathematics) the geometric structure comes on top of
a given underlying topological structure.

Here is an example from differential geometry. Let X and Y be the real plane R?, consid-
ered as a differentiable manifold (over R of type C*). Inside X we have a straight line Xj
and a point x € X;. Inside Y we have a broken line Y;, and y € Y is the singularity (the
breaking point). See picture:
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Topologically the configurations x € X, € X and y € ¥, C Y are indistinguishable.
Namely we can find a homeomorphism f : X — Y such that f(X,) = ¥p and f(x) = y.

However, in differential geometry they are distinct geometric configurations: there does
not exist a diffeomorphism f : X — Y such that f(X,) = Yy and f(x) = y.

This can be seen by examining tangent directions at x and y. (Try to give full proofs of
these assertions.)

How do we describe the extra geometric structure on an n-dimensional differentiable
manifold X, that comes on top of the given topology?

In earlier courses you learned that this is done by an atlas. Namely the space X has an
open covering X = (JU;, and for each i there is a homeomorphism g; : U; — V; to an
open set V; € R". The condition is that the map

giogi Wiy > R"
where W, ; := ¢;(U; N U;) € R”, is differentiable for all i, j.

(1.2.1)

It turns out that instead of an atlas, the same geometric information can be encoded by
declaring what are the differentiable functions f : U — R, for every open set U C X.

This means that for every open set U € X we need to provide a ring of functions, let’s
denote it by I'(U, Ox), and these rings must interact suitably w.r.t. inclusions U’ C U.

This data Ox is called a sheaf of rings on X. The pair (X, Ox) is called a locally ringed
space.

In the case of a differentiable manifold X, the ring T'(U, Ox) is just the ring of differen-
tiable functions f : U — R.
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Moreover, we will see that given two differentiable manifolds (X, Ox) and (Y, Oy), a
continuous map f : Y — X is differentiable iff a certain condition involving the sheaves
Ox and Oy, and the continuous function f, is satisfied.

For those fluent in the language of categories, the statement is that the category of differ-
entiable manifolds embeds fully faithfully inside the category of locally R-ringed spaces.
This is something we are going to prove.

For purposes of differential geometry the sheaf approach is not essential; but for more
complicated geometric settings, especially for algebraic geometry, the sheaf approach is
crucial.

Indeed, a scheme, as defined by Grothendieck in the 1950’s, is a locally ringed space
(X, Ox), which locally is an affine scheme. Heuristically this means that there is an atlas
like in , but the U; are affine schemes.

An affine scheme is a geometric object that is totally controlled by its ring of functions.
Indeed, for every (commutative) ring A there is an affine scheme Spec(A); and maps of
schemes

f : Spec(B) — Spec(A)
are the same as ring homomorphisms f*: A — B.

If there is time I will say more on affine schemes today.

Note that the role of calculus in differential geometry is played in algebraic geometry by
the theory of commutative algebra.

We shall spend the next few weeks learning about sheaves on topological spaces, before
we introduce schemes.

Here are some aspects of scheme theory that make it superior to classical algebraic ge-
ometry:

e Algebraic geometry over fields that are not algebraically closed. We will see the
affine real line A, soon.

o In arithmetic geometry the schemes are defined over the base ring Z; there is no
base field at all. The prototypical example is the curve (X, Ox) = Spec(Z), whose
points are the prime ideals of Z.

e In a scheme (X, Ox) the sheaf of rings Ox can have nilpotent elements. These
nilpotents enable algebraic infinitesimal calculus, including the detection of sin-
gularities.

1.3. Examples. The rest of this first lecture will consist of examples, without giving all
the definitions — a kind of a preview of things to come.

Please let me know in real time if some concept I am talking about is not familiar to you,
or if some assertion is not clear. I will either explain these, or defer them to later stages
of the course.

In these examples we will work the the field of real numbers R.

By an R-ring we mean a commutative ring A, equipped with a ring homomorphism
$a : R — A, called the structural homomorphism. (Older books used the expression
"R-algebra".) If B is another R-ring, then an R-ring homomorphism ¢ : A — B is a ring
homomorphism such that o ¢4 = @p.
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All rings have unit elements, and these units must be preserved by ring homomorphisms,
ie ¥(14) = 1p.

We shall start with the ring A := R[¢] of polynomials in one variable over the real num-
bers. It is an R-ring in an obvious way.

Note that given an ideal a C A, the quotient ring A/a is automatically an R-ring, and the
canonical surjection 7 : A — A/a is the unique R-ring homomorphism from A to A/a.

For us A is the ring of global algebraic functions on the affine line A.
But what is the affine line A]i2 as a geometric object?
The answer is this: A, is the prime spectrum of the ring A = R[¢t].
The notation is
A]i{ = Spec(R[¢]).
The set of points of the scheme Ay, are the prime ideals of the ring A = R[¢].

We know that all prime ideals of A are principal, and they are of three kinds:
(i) The maximal idealsm = (¢t — 1) for A € R.
(ii) The maximal ideals m generated by irreducible quadratic monic polynomials,
suchasm = (2 +1).
(iii) The prime ideal (0).
Correspondingly, the affine line A}, has three kinds of points, and each point has a residue
field:

(i) Apointx =m = (t—A) with A € Ris called an R-valued point ofA]iz. The residue
field of x is
k(x)=A/m =R

The "coordinate function” t has a value t(x) € k(x), which by definition is the
residue class of t modulo m.

But since there is a unique R-ring isomorphism k(x) = R, we can say that the
valueis t(x) = A € R.

The set of R-valued points of Ay, is denoted by AL (IR). We see that there is a
canonical bijection of sets A]}{(]R) SR, x o t(x).

Here is the picture:

vesidae, R ll 669 R

%

g mr R- vrdied
ik %% Ar

For instance, the origin is the point x € Aﬁ{(]R) s.t. t(x) = 0.

(if) A point x = m s.t. the maximal ideal m is generated by a quadratic irreducible
monic polynomial p(¢) has a residue field

k(x)=A/m = C.

There is no canonical R-ring isomorphismk(x) = C. Indeed, there are two equally
good isomorphisms ¢; : k(x) = C, i = 1,2, and they are related by ¢, = o o
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¢1, where o is complex conjugation. The isomorphism ¢; sends t — A;, where
A, Az € C are the two distinct roots of the polynomial p(#).

In other words, the value t(x) € k(x) is well-defined: it is the residue class of ¢
modulo m; but the value t(x) = A; € C depends on the isomorphism ¢; : k(x) =
C chosen.

To be specific, let’s consider p(t) = t* + 1. Then the value t(x) € k(x) can be
+ieC.

For this reason it is confusing to draw a picture of the C-valued points of AL, and
we shall try to avoid it...

(iii) The point x = (0) € AL, i.e. the zero ideal. This is called the generic point of AL,
for a reason we shall see later. Its residue field is k(x) = R(t), the fraction field
of A = R[t]. The value t(x) € k(x) = R(t) is t(x) = t.

It is even less obvious how to draw the generic point. Often it is drawn as a blurb:

N SN —
BN e 'y

oy qraarte vqoigv

13

For the reasons explained above, in illustrations we shall usually just draw the set Ay (R)
of R-valued points, or subsets of it.

More generally, when drawing an arbitrary scheme X, we shall usually pretend it is de-
fined over R, and then we’ll draw "the set X (R) of R-valued points of X". This approach
is usually more instructive.

I will not talk about the Zariski topology of the space X := Ay now, nor about the sheaf
of "functions" Ox on X.

Let me only say that the points x € X = Ay corresponding to maximal ideals are closed,
ie. the subset {x} C Ay is closed. Hence, removing any finite number of them gives an
open subset U C X.

The point x corresponding to the ideal (0) C R[¢] is dense, namely the closure of the set
{x} is the whole space Ay. This is why it is called the generic point.

If we remove the origin, i.e. the point x, € AIIR s.t. t(xg) = 0, then the "function" t € A =
R[t] becomes invertible on the open set U := AL, — {xo}, and the ring of "functions" on U
is the localization

(1.3.1) [(U,0x) =A, = At =R[t,t7"].

o

NO“‘. " JB: R,
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Exercise 1.3.2. Let (X, Ox) := A = Spec(R[t]).
(1) Letx e X = Aﬁ{ be a closed point, and let U := X — {x}.
Try to say what is the ring of functions I'(U, Ox). (Hint: study the case x = x,

above, but now the maximal ideal m = x is generated by some irreducible monic
polynomial p(t).)

(2) Now xq,...,x; are finitely many distinct closed points in X, and U :=
X — {x1,...,x;}. Try to say what is the ring of functions I'(U, Ox).

Exercise 1.3.3. We know that the set of points of the affine scheme (X, Ox) := Spec(Z)
is the set of prime ideals in Z.

Try to say what are the residue fields of the points x € X. (Hint: look at the case of the
affine line Ay, and make an analogy.)

Let x € X be a closed point, i.e. the ideal x = m C Z is maximal, and let U := X — {x}. Try
to say what is the ring of functions I'(U, Ox). (Hint: make an analogy to formula (1.3.1).)

End of live Lecture 1

o O O

The material below is for self-reading before lecture 2. Some of it is pretty hard, and also
the exercises are hard. This material is optional only, meant to make the introduction
richer.

Consider the affine real line X := Ay, and the affine real plane Y := A%. Writing A := R[s]
and B := R[s, t], we have X = Spec(A) and Y = Spec(B).

Let f : Y — X be the projection on the first coordinate.
Here is a picture, showing only the sets of real points X (R) and Y (R).

(1.3.4)
l ‘

Ke @Ay

The "coordinate axes" are meaningless in algebraic geometry, as is the limit s — oo that
the arrow tip on the s-axis indicates. I am drawing them only to help the imagination.

The effect of the projection f on functions is by pullback:
(1.3.5) ff:A=R[s] > B=R][s,t], f"(s)=s.
My picture seems to indicate that there is a well-defined function of sets f : Y(R) —

X(R). This would make sense only if f(Y(R)) € X(R), and the next exercise shows that
this is true.
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Exercise 1.3.6. Here X = A]}Q and Y = A%z» f Y — X is the projection (1.3.4), and
¢ == f* : A — Bis the ring homomorphism in formula (I.3.5).

(1) Suppose q C B is a prime ideal, with preimage p := ¢~1(q) C A. Prove that pis a
prime ideal of A.

We shall learn later that this is the way the map f : Y — X is recovered from the
ring homomorphism ¢. Namely, writing x := p and y := q, we have f(y) = x.

(2) Trytoprove thatif y = qisin Y(R) then x = p = f(y) = ¢~1(q) is in X(R). (Hint:
the ring homomorphism ¢ : A — B induces an injective R-ring homomorphism
$ : A/p — B/q. The assumption y € X(R) says that B/q = R as R-rings. Deduce
that R — A/p is also an isomorphism.)

As we will learn later, the rule f — f* gives a bijection between the set of maps of affine
R-schemes f : Y — X and the set of R-ring homomorphisms f*: A — B.

For those familiar with categories, the precise statement is that Spec is a duality, namely
a contravariant equivalence, between the category of R-rings and the category of affine
R-schemes.

Next let Z be the parabola in the plane with equation t? = s.
Here is the set Z(IR) sitting inside the plane Y(R) :

2 dafing
\m\ ‘tL=S

NJ

K= Ay

The ring of algebraic functions of Z is
C:=R[s, t]/(t* - s).
Z is an affine scheme too: Z = Spec(C).
The projection f : Y — X restrict to a map of affine schemes f : Z — X.
The ring homomorphism
f*:A=R[s] —» C=R[s,t]/(t* —s)
is f*(s) =s.

The projection f : Z — X is "not nice" at the origin z, € Z, or above the origin x, € X.
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(1.3.7)

X< Ay

This is seen in several ways.

First, the size of the fibers: the fiber f~!(x,) is a single point zq, whereas all other fibers
f~1(x) have size 2 or 0. (Warning: we are only looking at the function f : Z(R) — X(R)
between R-valued points now.)

The second indication is that — when f : Z(R) — X(R) is viewed as a map of differen-
tiable manifolds — the map f is not a local diffeomorphism only at z;. The induced linear
map on tangent spaces degenerates at zo. (This can also be stated in algebraic geometry).

Here is a third way to study the singularity of f at z.

In algebraic geometry the fiber of a map of schemes is a scheme. We will study this much
later.

Here is the formula in our situation. Take a point x € X(R), and look at the ring

(1.3.8) Cyx :==C®4 k(x).
The fiber of f above x is the affine scheme
(1.3.9) Z, = Spec(Cy).

Exercise 1.3.10. Calculate the ring Cy for x € X(R) in the following cases.
(1) s(x) > 0. You should get Cy = Rx R = k(z_) X k(z,), where f~1(x) = {z_,z;}.
(2) x = xq is the origin. Here you should get C,, = R[t]/(¢?). The element t € Cy is a
nonzero nilpotent, and this is called ramification. It is the algebraic indication of
singularity.
(3) s(x) < 0. You should get C, = C = k(z), where f~!(x) = {z}. The point z is not
in Z(R), and this is why in our picture the fiber 7! (x) looks empty.
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Lecture 2, 28 Oct 2020 \

2. CATEGORY THEORY

This concept is going to be extremely important for us, and some students are not familair
with it.

I prepared too much material for one lecture, so most likely we will continue with it into
lecture 3.

2.1. Categories.

Definition 2.1.1. A category C is a mathematical system consisting of:
e A set Ob(C), called the set of objects of C.

e For every pair Cy, C; € Ob(C), there is a set Homg (Co, Cy), called the set of mor-
phisms from Cy to C;.

e For every triple Cy, C1, C, € Ob(C), there is a function
o : Homg(Cy, Cy) X Homg (Cy, C;) — Homg (Cy, C2)
called composition.
e For every C € Ob(C), there is a morphism
idc € Homc(C, C),
called the identity morphism.

These are the axioms:

> Composition is associative: given objects Cy, C1, Cy, C3 € Ob(C) and morphisms
fi € Homg(Ci-1, C;), there is equality

fao(fao fi) = (fso f2) o f € Homg(Co, Cs).

> The identity morphisms are neutral for composition: for every f € Homc(Cop, C1)
there is equality

fOidCO =f=idc1 Of.

We usually write f : C — D to mean that f € Hom¢(C, D).

Another notational convention is to write C € C instead of C € Ob(C).

Definition 2.1.2. A morphism f : C — D in a category C is called an isomorphism if
there is a morphism g : D — C such thatgo f =idc and f o g = idp.

Exercise 2.1.3. Let C,D € C.

(1) Prove that idc is an isomorphism in C. (For this reason we call it the identity
automorphism of the object C.)

(2) Suppose f : C — D is an isomorphism in C. Prove that there is exactly one
morphism g : D — C in C satisfying g o f = id¢ and f o g = idp. (For this reason
we call g the inverse of f, and denote t by f~1.)
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Example 2.1.4. The category Set has all sets as its objects. The morphisms f : X —
Y between X,Y € Ob(Set) are the functions. The identity morphisms are the identity
functions, and composition is the usual one.

Remark 2.1.5. The example above brings us to a variant of Russell’s Paradox: is the set
X := Ob(Set) an element of itself?

There are two main ways to avoid this set-theoretical difficulty. Both work by installing
a size hierarchy among sets.

(1) Modify Definition declaring that Ob(C) is a class. This requires defining

"class", and this is done in the von Neumann — Bernays — Godel set theory.

(2) Choose a Grothendieck universe U, which is some big set. Elements of U are called
small sets. Then declare that Ob(C) € U and Hom¢(C, D) € U.

We will take the second way. Thus, for us (implicitly) Set is the category of small sets.

As usual with foundations, these issues are not really important or interesting. It is the
algebraic properties of categories (and functors, etc.) that are interesting and useful.

Students who want to read more about these matters can look in [Mac2, Chapter I].

Example 2.1.6. Fix a ring A. The category Mod A of A-modules has all A-modules as its
objects. (Regarding size: as in Remark[2.1.5} the ring A and the modules M are small sets.)
The morphisms ¢ : M — N between M, N € Ob(Mod A) are the A-module homomor-
phisms. The identity morphisms are the identity functions, and composition is the usual
one.

Example 2.1.7. Let ¢ : M — N be an A-module homomorphism, i.e. a morphism in
Mod A.

Consider this diagram

(2.1.8) M— N

M/Ker($) ——s Tm(g)

in the category Mod A.

It consists of four objects and four morphisms. The vertical morphisms are the canonical
surjection 7z and the inclusion €. The bottom isomorphism ¢ is the canonical one.

This diagram is commutative. By this we mean that the two morphisms we get from M
to N, namely ¢ and the composition of the other three morphisms, are equal.

Example 2.1.9. The category Rng of (commutative) rings has all rings as its objects.
The morphisms f : A — B between A, B € Ob(Rng) are the ring homomorphisms. The
identity morphisms are the identity functions, and composition is the usual one.

Example 2.1.10. Let A be a ring.
The category of A-rings is just like the category of R-rings we mentioned earlier.

Namely, an A-ring a ring B, equipped with a ring homomorphism ¢p : A — B, called the
structural homomorphism.

If C is another A-ring, then an A-ring homomorphism {y : B — C is a ring homomorphism
such that ¢ o ¢ = ¢¢.
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In other words, the diagram

$B

W

$c
14
—C
in Rng is commutative.

The category of A-rings is denoted by Rng/A.

Definition 2.1.11. Let C be a category.

(1) An object Cy € C is called an initial object if for every C € C there is exactly one
morphism Cy — C.

(2) An object Cs € Cis called a terminal object if for every C € C there is exactly one
morphism C — CoC.

Exercise 2.1.12. Prove that any two initial objects of a category C are uniquely isomor-
phic. Likewise for terminal objects.

Exercise 2.1.13.
(1) Let A be a ring. Show that there is exactly one ring homomorphism Z — A.
Conclude that Z is the initial object of the category Rng.

(2) Find the terminal object of Rng.

Example 2.1.14. The category of groups Grp has groups as its objects and group homo-
morphisms as its morphisms.

Example 2.1.15. The category of abelian groups Ab has abelian groups as its objects, and
group homomorphisms as its morpisms.

Example 2.1.16. The category of topological spaces Top has topological spaces as its
objects, and continous maps homomorphisms as its morphisms.

Exercise 2.1.17. Find the initial and terminal objects of Grp, Ab and Top.

The categories in the previous examples have large sets of objects (in the sense that
Ob(C) < U, see Remark [2.1.5). But it very instructive to look at categories with very
few objects.

Example 2.1.18. Take a group G. Define a category G as follows: there is a single object,
say x; so that Ob(G) = {x}. The morphisms g : x — x are the elements of G, i.e.
Homg(x,x) := G. The identity morphism is idy := e € G, the unit element of G; and
composition is the multiplication of G.

Likewise:

Example 2.1.19. Take a ring A. Define a category A as follows: there is a single ob-
ject, say x; so that Ob(A) = {x}. The morphisms a : x — x are the elements of A,
i.e. Homp(x, x) := G. The identity morphism is id, := 1 € A, and composition is the
multiplication of A.
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2.2. Functors. If G and H are groups, we can talk about group homomorphisms ¢ : G —
H. Likewise, if A and B are rings, we can talk about ring homomorphisms f : A — B.

It raises the question: Is there an analogous concept of “homomorphism” between cate-
gories?
Definition 2.2.1. Let C and D be categories. A functor
F:C—D
consists of a function
Fop : Ob(C) — Ob(D),
and for every pair of objects Cy, C; € Ob(C) a function
Feyc, : Homg(Cy, C1) — Homp (Fob (Co), Fob (Cy)).

There are two conditions:

(1) Identities: FC,C(idC) = idFob (©)-

(ii) Composition: For all Cy, C;, C; € Ob(C) and ¢; € Homc(C;-1, C;) there is equality

Fe,c,($2) © Fe,c,($1) = Fey 0, (92 © ¢1).

Usually we suppress the subscripts from F,, and Fc, ¢, -

Exercise 2.2.2. Let G and H be groups, with corresponding single-object categories G
and H, as in Example Show that there is a canonical bijection between group
homomorphisms ¢ : G — H and functors F : G — H.

Many functors are “forgetful functors”. Here is the protoypical example.
Example 2.2.3. The forgetful functor

F: Grp — Set

sends a group G to its underlying set, and a group homomorphism ¢ to the function
between the underlying sets.

Exercise 2.2.4. Functors can be composed. The exercise is to write the precise formulas
for the composition G o F of a functor F : C — D with a functor G: D — E.

Definition 2.2.5. Let F : C — D be a functor between categories. The functor F is called
faithful (resp. full) if for every pair of objects Cy, C; € Ob(C) the function

F : Hom¢/(Co, C1) — Homp (F(Co), F(Cy))
is injective (resp. surjective).

Forgetful functors (such as in Example [2.2.3) are faithful.

Definition 2.2.6. Let C be a category. A subcategory C’ of C consists of a subset
Ob(C’) € Ob(C),
and for every pair of objects Cy, C; € Ob(C’) a subset
Homg¢' (Cyp, C1) € Homgc(Cy, Cy).

The conditions are:
(i) Identities: id¢c € Homg (C, C) for every C € Ob(C’).
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(ii) Composition: For all Cy, Cy, C; € Ob(C’) and ¢; € Homg (Cj—1, C;), we have
¢$2 o ¢1 € Home' (Co, Cz).

Clearly C’ is itself a category, with the identity and composition of C; and the inclusion
F : C’ — C is a faithful functor.

Definition 2.2.7. Let C be a category and let C’ C C be a subcategory. We say that C’ is
a full subcategory of C if

Homg (Co, C1) = Homc (Co, C1)
for all Cy, C; € Ob(C).
In other words, C’ is a full subcategory of C if the inclusion functor F : C" — C is full.
Example 2.2.8. The category Ab is a full subcategory of Grp.

Exercise 2.2.9.
(1) Find a functor F : C — D that is full but not faithful.

(2) Find a functor F : C — D that is faithful but not full.

’ End of live Lecture 2

o 0 0

The material below is for self-reading before lecture 3. (I just talked about it briefly during
the live lecture.)

Exercise 2.2.10. Let A be a nonzero ring.

Show that there is a functor
F:Set - Mod A

that sends an object X to the free module F(X) with basis X,

and it sends a function f : X — Y to the unique A-module homomorphism F(f) that
makes the diagram of sets

x— 1 .y

F(f)

F(X) ——— F(Y)
is commutative. Here the vertical arrows are the inclusions.

This is called the free module functor.

Exercise 2.2.11. Let A be a nonzero ring.
The category of finite sets is Set;.

Show that there is a functor
F : Set —» Rng/A
that sends an object X to the polynomial ring A[X] in the set of variables X,
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and it sends a function f : X — Y to the unique A-ring homomorphism F(f) that makes
the diagram of sets

X % Y
F(f)
F(X) ——— F(Y)
is commutative. Here the vertical arrows are the inclusions.

This is called the polynomial ring functor.

Later we will explain how the functors F from the last two exercises are related to the
corresponding forgetful functors.

Here are two examples of functors from Mod A to itself. (For those who need a reminder
of tensor products, see Section 8 in [[Ye2]].)

Example 2.2.12. Fix M € Mod A. There is a functor
G :Mod A — Mod A

such that
G(N)=M®u N
on objects,

and on a morphism ¢y : N — N’ in Mod A it is
G(Y)=idy®Yy:G(N)=M®3y N - G(N') =M®4 N'.

Example 2.2.13. Fix M € Mod A. There is a functor
F:ModA — Mod A

such that
F(N) = Homy (M, N)
on objects, and on a morphism ¢/ : N — N’ itis
F(¢) = Hom(idp, ¥) : F(N) = Homa (M, N) — F(N’) = Homs (M, N").
Here
Hom(idag, ¥)(y) =¥ oy : M — N’
for y € Homy (M, N).

Example 2.2.14. Suppose we try to change things around in the previous example;
namely we fix N € Mod A, and we try to define a functor

H:ModA — Mod A

such that
H(M) = Homu (M, N)
on an object M € Mod A.
The only formula that seems to make sense for a morphism ¢ : M — M’ is
H(¢) = Hom(¢,idy) : Homa(M’, N) — Homyu (M, N),

where
Hom(¢,idy) == yo¢p : M — N’
for y € Homy(M', N).
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But this is a homomorphism
H(¢) : HM') — H(M).

It is in the wrong direction! What to do?
The answer is: a new definition.

Definition 2.2.15. Let C and D be categories. A contravariant functor
F:C—-D

consists of a function

F : Ob(C) — Ob(D),
and for every pair of objects Cy, C; € Ob(C) a function

F : Homg(Cy, C1) — Homp (F(Cy), F(Cy)).
There are two conditions:
(i) Identities: F(idc) = idp(c).

(if) Composition, reversed: For all Cy, C1,C, € Ob(C) and ¢; € Homcg(C;j_1, C;) there
is equality

F(¢1) o F($2) = F(d2 0 ¢1)
in Homp (F(Cy), F(Cy)).

An ordinary functor (Definition [2.2.1) is sometimes called a covariant functor.

Next week we will talk about natural transformations.

End of Lecture 2 ‘
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’ Lecture 3, 4 Nov 2020 ‘

Today we will learn abouit natural transformations, opposite categories and equivalences
of categories. If time permits we will start talking about sheaves of rings of functions. [In
fact we did less than promised.]

2.3. Natural Transformations. Functors go from one category to another category,
just like group homomorphism go from one group to another group.

But in the world of categories there is another level: something that goes from one functor
to another functor; these are the natural transformations in the next definition.

Definition 2.3.1. Let C and D be categories and let F, G : C — D be functors. A natural
transformation (sometimes called a morphism of functors)

n:F—-G
is a collection
1 = {nc}ceon(c)
of morphisms
nc : F(C) = G(C)

in D, such that for every morphism ¢ : Cy; — C; in C the diagram

F(y)
(1) F(Cy) —— F(Gy)
1C, nc,

G(¥)

G(Cy) —— G(Cy)

in D is commutative.

Here are some examples / exercises.

Example 2.3.2. This is a variation of Example The source and target categories
are both Mod A here. Fix a homomorphism ¢ : L — M in Mod A. Consider the A-linear
functors

G :ModA — ModA, Gp:=L®(-)
and
Gy :ModA — ModA, Gy :=M®4 (-)
as in that example.
For every module N there is a homomorphism
NN :GL(N) =L®4y N = Gy(N) =M ®4 N,
namely

NN =¢®idy : L® N - M ®4 N.

I claim that n = {§n}NeMod 4 is @ natural transformation 1 : G — Gy. For this I must
verify that diagram () in Definition is commutative, for every morphism ¢ : Ny —
Nj in the source category.

19 | file: notes-201112b



Course Notes | Amnon Yekutieli | 12 Nov 2020

Take an arbitrary homomorphism i/ : Ny — N;. We need to prove that the diagram

Gr(¥)
GL(No) = L@ No—-" s G (Ny) =L ®a Ny
1INy Ny
Gm(¥)

Gm(No) =M ®4 No —— Gm(N1) = M ®4 Ny
in Mod A is commutative.
This means that we have to prove that for every element u € L ®4 N, there is equality
(233) (18, 0 GL()) () = (Gur(¥) © ) ()
in L ®4 Nj.
Because both functions
nn, o GL(Y), Gu(¥) onn, : L®4 Ny — M®4 N
are A-linear, it is enough to verify for a pure tensor u = [®n, with] € Land n € Nj.

Now
(o GL()) (@ n) =N, (1@ Y (n) = $(1) ® Y(n)
and
(Gu(¥) onn) (L@ n) = Gu(¥)(¢(D) ® n) = ¢(1) @ Y(n).

These are equal, as claimed.

Definition 2.3.4. Let C and D be categories and let F,G : C — D be functors. A natural
transformation  : F — G is called a natural isomorphism if for every object C € C the
morphism 7¢ : F(C) — G(C) in D is an isomorphism

Exercise 2.3.5. In the situation of Example|2.3.2] prove that the following two conditions
are equivalent:

(i) ¢ : L — M is an isomorphism of A-modules.
(ii) n: G — G is a natural isomorphism (an isomorphism of functors).

Exercise 2.3.6. Let C and D be categories, let F,G : C — D be functors, and let 1 :
F — G be a natural transformation. Assume that every morphism in the category D is an
isomorphism. (Such a category is called a groupoid.) Prove that n is a natural isomorphism.

Example 2.3.7. Let G and H be groups, with corresponding single-object categories G
and H, say with Ob(G) = {x} and Ob(H) = {y}. See Example[2.1.1§|

Let ¢, : G — H be group homomorphisms, that we view (as in Exercise[2.2.2) as functors
Fg,Fy : G — H. Namely Fy(x) = y and F4(g) = ¢(g), etc.

Given an element h € H, let Ad(h) be the automorphism of H which is conjugation by h,
namely Ad(h)(f) := h-f-h~! forall f € H.

Suppose there is a natural transformation 7 : Fy — Fy.

Note that 7 is automatically a natural isomorphism, by Exercise [2.3.6] (since H is a
groupoid).
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For every morphism g : x — x in G, i.e. g is an element of G, we have a commutative
diagram

Fy(9)
(2.3.8) Fg(x)=y———Fp(x) =y
'le l’]x
Fy(9)

Fy(x)=y —————Fy(x) =y
in H.
Now 7, is a morphisn y — y in the category H, so 5, = h for some element h € H. Also
Fy(g9) = ¢(9) € H and Fy(g) = ¥(g) € H. So diagram becomes

Fy(9)=¢(9)
(2.3.9) Fo(x) =y ———Fg(x) =y

”x—hl l’?x—h
Fy(9)=y(9)

Fy(x)=y ——— Fy(x) =y

Recall that the operation of composition in H is multiplication in the group H. We see
that the condition of commutativity of diagram (2.3.8) in the category H is the same as
equality

(2.3.10) h-¢(g9) =¥(9)-h

in H.

Multiplying both sides of by h~! on the right we get this equality
(2.3.11) y(9) =h-¢(g)-h""

in the group H. But
h-¢(g)-h™" = (Ad(h) © §)(9).
Thus equality for all g € G says that
(2.3.12) Y =Ad(h) o .
as group homomorphisms G — H.
This argument can also be reversed.

The conclusion is that the functors Fy and F are naturally isomorphic iff ¢ and ¢ are
related by an inner automorphism, as in (2.3.12).

Proposition 2.3.13. Let C and D be categories, let F,G,H : C — D be functors, and let
n:F— Gand0:G — H be natural transformations. Then the collection

0 on :={6c o nclceob(c

is a natural transformation F — H.

Exercise 2.3.14. Prove this proposition.

A functor F : C — D hasiits identity natural automorphismidr : F — F, defined a follows:
for each object C of C it is
(idp)c = idp(c) : F(C) = F(C),

the identity automorphism of the object F(C) in D.
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Proposition 2.3.15. Let C and D be categories, let F,G : C — D be functors, and let
n : F — G be a natural transformation. TFAE:

(i) 7 is a natural isomorphism (Definition[2.3.4).
(if) There is a natural transformation { : G — F such that { on = idp andn o { = idg.

Moreover, if these equivalent conditions hold, then { is also a natural isomorphism, it is
unique, and it is called the inverse of 1.

Exercise 2.3.16. Prove this proposition. (Hint: it is easy, after you understand what it
says.)

’ End of live Lecture 3

AR G

The material below is for self-reading before lecture 4 (I just talked about it briefly during
the live lecture). There are a few exercises, and some are hard.

Recall that a finitely generated abelian group M has as direct sum decomposition
(2.3.17) M=F&T,

where F is a free abelian group, i.e. F = Z” for some r € N, and T is a finite abelian group.
(The letters "F" and "T" stand for "free" and "tosrsion", respectively.)

The next exercise gives meaning to the statement “the torsion subgroup of an abelian is
not naturally a direct summand of the group”.

Exercise 2.3.18. We work in the category Abg, = Mod; Z of finitely generated abelian
groups. It is a full subcategory of Ab.

Given a finitely generated abelian group M, let T(M) C M be the subgroup of torsion
elements (i.e. the elements of finite order).

(1) Prove that T : Abg; — Aby is a functor.
(2) Let Id be the identity functor of the category Abg,. Prove that the inclusions
em: T(M) > M,
for M € Abyg, assemble to a natural transformation
€ = {em}tmenn, : T — 1d
of functors from Abg, to itself.

(3) (Hard) Prove that there does not exist a natural transformation o : Id — T of
functors from Abfg to itself, such that o o € = idr as natural transformations from
the functor T to itself (i.e. for every M the homomorphism oy © €y : T(M) —
T(M) is the identity idz(a).)

Hint for (3): Find a counterexample, as follows.

Given M € Abfg, there is a short exact sequence

(2.3.19) 0— TM) 25 M2 F(M) - 0

in Abg,. Here F(M) := M/T(M), and this is a free abelian group.
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Suppose oy : M — T(M) is a homomorphism satisfying o o ey = idr(ar). Then there
is an induced splitting of the short exact sequence (2.3.19). This means that there is an
isomorphism

(2.3.20) (oa, tm) = M =5 T(M) & F(M)

and it fits into this commutative diagram with exact rows:

€M M

(2.3.21) 0 T(M) M F(M) 0
ﬁlid :l(D'M,ﬂm) :lid
0 M) 22 (M) @ F(M) -2 F(M) 0

Let’s assume that a natural transformation o : Id — T is given, satisfying oaroey = idr(um)
for every M. We want to produce a contradiction.

The way to do it is to find an abelian group M, and an automorphism i of M that does
not respect the direct sum decomposition (2.3.20) induced by o;.

Try to do this for abelian group M := Z & (Z/(2)). End of hint.

I will post a solution for item (3) before the next lecture (please remind me!).
The next exercise gives meaning to the statement “the center of a group is not a functor”.

Exercise 2.3.22. (Hard) We work in the category Grp of groups. Given a group G, let
Cent(G) C G be the center.

Prove that there does not exist a functor C : Grp — Grp, together with a natural transfor-
mation y : C — Id, such that for every group G we have C(G) = Cent(G), and the group
homomorphism

Y : C(G) = Cent(G) » Id(G) =G
is the inclusion. (Hint: look for an abelian group M that’s a subgroup of a nonabelian
group G, but M is not in the center of G. You can find such G of size 6.)

Opposite categories and equivalences will be discussed next week. Then we will introduce
sheaves of rings of functions. Adjoint functors will be postponed until later (too much
abstract material at once in confusing).

’ End of Lecture 3 ‘
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Lecture 4, 11 Nov 2020 ‘

Today we are going to finish the first discussion of category theory. We will return to the
concept of adjoint functors later, when it will be needed. By then we should be so fluent
in category theory that this confusing concept will be digestible (I hope — frankly, I never
really understood it well!).

2.4. Opposite Categories.

Definition 2.4.1. Given a category C, its opposite category C°P has the same objects, but
its arrows and their compositions are reversed

Let me describe this in detail.

First, define the set of objects of the new category C° to be
(2.4.2) Ob(C) := Ob(C).

The identity automorphism of the set Ob(C) is now written as a bijection

(2.4.3) Op : Ob(C) = Ob(C°P).

Now to morphisms. Given a pair of objects Cp, C; € Ob(C), we let
(2.4.4) Homcer (Op(Cy), Op(Cy)) := Home (Co, C1).

There is a bijection of sets (the identity automorphism in disguise)

(2.4.5) Op : Homg (Cy, C1) = Homgeer (Op(Cy), Op(Co)).

This means that every morphism ¢ : D; — Dy in C°P can be expressed as i = Op(¢) for
a unique morphism ¢ : Cp — C; in C, with D; = Op(C;).

The composition o°P of CP is as follows. Given morphisms ¢, : D, — D; and ¢ :
D; — Dy in C, let’s express them as 1/; = Op(¢;), for morphisms ¢; : C;_; — C;, with
D; = Op(C).

Then the composition in CP is

(2.4.6) Y1 0% ¢ = Op(¢1) o Op(¢) := Op(¢pz © ¢1).
In diagrams: first the commutative diagram of the composition in C.
P20 1
oo —" 3,

Now the commutative diagram of the composition in C°P.

Y10y =0p(p20¢1)

=0 =0
Dy = 0p(Cy) —222%) b = op(cy) L2 L By = 0p(Co)

Lastly, the identity automorphism of an object C € C is the same as in C, but we can
also write as

(2.4.7) ide = Op(ide).

Exercise 2.4.8. Let C be a category.
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(1) Prove that C° is indeed a category, with set of objects (2.4.2), sets of morphisms

(2.4.4), composition and identities (2.4.7).

(2) Prove that Op : C — CP is a contravariant functor.

Proposition 2.4.9. Let C and D be categories. The formula F +— F o Op is a bijection from
the set of contravariant functors F : C — D to the set of (ordinary, or covariant) functors
C® — D.

Exercise 2.4.10. Prove Prop

Since we often have several categories under discussion, we may decorate the opposite
functor of C like this:

(2.4.11) Op;:C — CP.
Exercise 2.4.12. Let C be a category. Prove that
Opger ©Opg =1dc .

(These are functors from C to itself.)

From now on we will usually deal only with (covariant) functors. Whenever we encounter
a contravariant functor, we make it covariant be replacing the source category with its
opposite; this is justified by Proposition For instance:

Example 2.4.13. Let C be a category and C € C. Then Hom¢(—,C) is a contravariant
functor C — Set, but we prefer to see it a (covariant) functor

Homg(—,C) : CP — Set.

Remark 2.4.14. Given a "concrete" category, such as C = Mod(A) for a ring A, it is
interesting to know "how concrete” the opposite category CP is.

Here is a result, probably due to P. Freyd (it is an exercise in a book of his). Suppose A is a
nonzero NC (i.e. not necessarily commutative) ring, and Mod(A) is the category of left A-
modules. Then there does not exist a linear equivalence of categories between Mod(A)°P
and Mod(B), for any NC ring B. (An equivalence F : Mod(A)°? — Mod(B) is linear if
it respects the abelian group structures on morphisms in Mod(A)°P and in Mod(B).) See
[Yell Remark 2.7.20].

There is a complete (but hard) proof for the case of A = Z in [Yel, Example 2.7.21].

AR G

Definition 2.4.15. Given a noncommutative ring A, its opposite ring A°? has the same
underlying Z-module as A, the same unit element, but the multiplication -°P is the re-
versed:

op(ay) P op(ag) := op(ag * ar).
Here op : A — A°P is the identity automorphism of the Z-module A.

The Z-linear bjection op : A — A°P is a ring anti-automorphism. Of course A = AP iff A
is a commutative ring.

Example 2.4.16. Some noncommutative rings are isomorphic to their opposites.

Let K be a nonzero commutative ring, n > 2 and A := Mat,(K). Then A is a NC ring.
Transposition is a NC ring isomorphism A = AP,
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Example 2.4.17. Let G be a nonabelian group. Then g — ¢! is a group isomorphism
¢ :G— GP.

Example 2.4.18. Given a NC ring A, we can make it into a single-object category A, say
Ob(A) = {x}, such that Enda(x) = A. Cf. Example[2.1.19]

Then the category corresponding to the opposite NC ring A is the opposite category
A°P.
2.5. Equivalences of Categories.

Definition 2.5.1. A functor F : C — D is called an equivalence if there is a functor
G : D — C, and isomorphisms of functors n: Go F = Idc and { : F o G = Idp.

The functor G is called a quasi-inverse of F.
It is very important to note that an equivalence F does not induce a bijection Ob(C) —
Ob(D). We will give the precise statement about that later.

Example 2.5.2. Consider the category Set of sets, its full subcategory Setg, of finite sets,
and the full subcategory C C Setg, on the set of objects {S;};eN, where

Si = {1,...,i} QN
Thus |S;| = i, and in particular Sy = @.

The inclusion functor
F:C — Setg,

turns out to be an equivalence.

To construct a quasi-inverse
G:Setz, —» C

we use the axiom of choice on the (big!) set Ob(Setg,). For every finite set T of cardinality
i := |T| we choose an isomorphism

:8>5T
in Setg,. In case T = S; we choose {r := idr.
The functor G is defined on objects by G(T) := S; where i := |T|.
For a morphism ¢ : T — U in Setg, we define
G(¢) =yl o gpolr.
This makes the diagram

G
S; = G(T) _w S;=G(U)

éVTl: =l§v
¢
T = Idset;, (T) —— U = Idset, (U)

commutative.

We see that
¢ = {QVT}TEOb(Setfm) :FoG > IdSetfm
is an isomorphism of functors.

And by construction we have
n:=idyg, :GoF = Idc,

and of course this is also an isomorphism of functors.
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Exercise 2.5.3. In the setting of Example [2.5.2] prove that G is a functor, and that it is a
quasi-inverse of F.

Exercise 2.5.4. In the setting of Example [2.5.2] find two different quasi-inverses Gy, G,
of F, and find an isomorphism of funtors y : Gy = G;.

Exercise 2.5.5. Let K be a field.

We shall use the notation Mod(K) for the category of K-modules, and Mod;(K) for its
full subcategory of finitely generated modules. (See Remark [2.5.6|below on terminology
and notation).

State and prove the equivalence, analogous to that of Example [2.5.2] between Mod; (KK),
and its full subcategory M on the set of objects {M;};eN, where M; := K.

Remark 2.5.6. Here is a side remark on terminology. Most people stick to an amusing
tradition and refer to K-modules as vector spaces; I think this is silly, and they (most
people) think I am crazy.

I have a reason though: "vector space" indicates some kind of geometric quality, and this
is almost always absent from KK-module. When we get to vector bundles there will indeed
be geometry!

Simiarly, in the theory of Lie algebras, the object g is both a K-module (abstract) and a
scheme (isomorphic to Ay for some n). - Lie groups —

Remark 2.5.7. There is much stronger notion of isomorphism of categories. This is a
functor F : C — D which is bijective on objects and on morphisms. An isomorphism F
has an inverse isomorphism G : D — C, and this G is unique.

If F is an isomorphism of categories, then it is an equivalence; but not vice verse, as
Example shows.

This is analogous to topology, where a homeomorphism f : X — Y is stronger than a
homotopy equivalence.

The inclusion f of the origin in the plane X = {xp} into the closed unit disc Y is an
example of a homotopy equivalence that is not a homeomorphism.

A functor F : C — D is called fully faithful if it is full and faithful; i.e. for every pair of
objects Cp, C; € C the function

F : Homc(Co, C1) — Homp (F(Co), F(Cr))
is bijective.
The functor F is said to be essentially surjective on objects if for every object D € D there
exists some object C € C and an isomorphism F(C) = D in D.

Theorem 2.5.8. Let F : C — D be a functor. TFAE:

(i) F is an equivalence.
(ii) F is fully faithful and essentially surjective on objects.

Exercise 2.5.9. Prove Theorem (Hint: Study Example|2.5.2])

’ End of live Lecture 4 ‘
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o O O

Here are the solutions of the hard problems from last week.

Solution 2.5.10 (of Exercise 3)). The solution is much more difficult than I thought...

As hinted, we are going to assume that a natural transformation ¢ : Id — T of functors
from Abg, = Mod¢(Z) to itself is given, and deduce a contradiction.

Let M be some object of Mod¢(Z), and let ¥ be some endomorphism of M. Because
o :Id — T is a natural transformation, we have a commutative diagram

(2.5.11) M =1d(M) —2— T(M)

l//—Id(I//)l lT(V/)

M =1d(M) —22 T(M)
This means that
(2.5.12) T(Y)oom=opmoy
as homomorphisms M — T(M).

Likewise, Because x : Id — F is a natural transformation, we have a commutative dia-
gram

(2.5.13) M =1d(M) —2— F(M)

¢=Id(l//)l lF )

M =1d(M) — 2 F(M)
This means that
(2.5.14) FW)onmny=myoy
as homomorphisms M — F(M).

Putting (2.5.12) and (2.5.14) together we get the following commutative diagram

(2.5.15) M—2 (M) @ F(M)
WJ/ J/(T(II/),FU//))
(om.7m)

M ———T(M)®F(M)
This says that i must respect the direct sum decomposition (2.3.20), which we repeat
here:
(2.5.16) (om, mp) = M = T(M) & F(M).

To finish, we will produce ¥ : M — M that does not respect its direct sum decomposition

(2.5.16).
Take

(2.5.17) M=Z& (Z/(2)).
Then F(M) = Z and T(M) = Z./(2).
Let m € T(M) be its unique generator, and let n € F(M) be one of its two generators.

Because F(M) is a free Z-module with basis n, there is a unique homomorphism  :
F(M) — M s.t. Yyr(n) = m. Let Y1 : T(M) — M be the zero homomorphism.
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Combined we get a homomorphism
(2.5.18) lﬁ = (!ﬁ'[‘, ¢F) o (O'M, JTM) ‘M — M.

Here is how ¢ fits into a commutative diagram:

(2.5.19) M —2" (A1) @ F(M)
b l(l//TJ//F)

M
But the endomorphism ¥ satisfies {/(n) = m, so it does not respect the direct sum decom-
position (2.5.16). QED.
Solution 2.5.20 (of Exercise|2.3.22). This is much easier!

Let G be the dihedral group D3, which is also the symmetry group S; of the set {1, 2, 3}.
This is (the only?) a nonabelian group of order 6. Let H := C; = Z/(2) and K := C5 =
Z./(3). There is an action of H on K by group automorphisms, and there are embeddings
0 : H > G and K » G, such that G = H % K, a semi-direct product.

Since H is abelian, it center is Cent(H) = H. On the other hand Cent(G) = {e}.

If we had a functor C : Grp — Grp, together with a natural transformation y : C — 1d,
such that for every group G we have C(G) = Cent(G), and the group homomorphism

Y6 : C(G) = Cent(G) —» 1d(G) =G

is the inclusion, there would be a commutative diagram

=incl
(2.5.21) CH=H-2 g
C(B)l l@—inel
yG=incl

CG)={e} L% .6

in Grp, in which the arrows marked "incl" are the inclusions, so they are injective. This
implies that C(0) is an injective group homomorphism, from a group of order 2 to a group
of order 1. QED.

End of Lecture 4 ‘
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