
Final #2

Mark the correct answer in each part of the following questions.

1. Consider the collection of all subsets of even size of {1, 2, . . . , n}.

(a) The following two algorithms have been suggested for enumerating
all sets in the collection:

• A1 – Traverse the set of all subsets in lexicographic order, but
take only every other set (more precisely, the first, the third,
the fifth, and so forth, up to the (2n − 1)-st).

• A2 – Traverse the set of all subsets according to the order of
the Gray code, but take only every other set.

(i) Both algorithms are correct and work in linear time.

(ii) Both algorithms work in linear time, but only the second is
correct.

(iii) Both algorithms are correct, but do not work in linear time.

(iv) Both algorithms are correct, but only one of them works in
linear time.

(v) None of the above.

(b) Consider the following three types of small changes of subsets of
even size:

• UP – addition of two elements.

• DOWN – removal of two elements.

• SIDEWISE – addition of one element and removal of another
one.

(i) It is possible to go over the collection with small changes, but
(at least for large n) we must use all three types of changes.
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(ii) It is possible to go over the collection with small changes.
Moreover, we may restrict ourselves to changes of type UP
and SIDEWISE. In addition, in the special case n = 8, it
is possible to restrict ourselves to changes of type UP and
DOWN.

(iii) It is possible to go over the collection with small changes.
Moreover, we may restrict ourselves to changes of type UP
and SIDEWISE. In the special case n = 8, it is impossible to
restrict ourselves to changes of type UP and DOWN.

(iv) There exist infinitely many numbers n, for which it is im-
possible to go over the collection with small changes.

(v) None of the above.

(c) We would like to draw a uniformly random subset from the collec-
tion. The following methods have been suggested:

• Method A:

a) Select a uniformly random subset A of {1, 2, . . . , n− 1}.
b) If A is of an even size – take it; otherwise – take A∪{n}.

• Method B:

a) Select a uniformly random subset A of {1, 2, . . . , n}.
b) If A is of an even size – take it; otherwise – with prob-

ability 1/2 pick a uniformly random k ∈ A and take
A − {k}, and with probability 1/2 pick a uniformly ran-
dom k ∈ {1, 2, . . . , n}−A and take A∪ {k}. (If n is odd,
and the set A = {1, 2, . . . , n} has been selected, then with
probability 1 take A− {k}.)

(i) Both methods select a subset with the required property, but
only the first does so with the correct probability. Both re-
quire on the average linear time.

(ii) Both methods select a subset with the required property, but
only the second does so with the correct probability. Both
require on the average linear time.

(iii) Both methods select a subset as required, but only the first
requires on the average linear time, whereas the second re-
quires Θ(n2).
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(iv) Both methods select a subset as required, but only the second
requires on the average linear time, whereas the first requires
Θ(n2).

(v) None of the above.

2. (a) Consider the algorithm presented in class for traversing the set
of all partitions of {1, 2, . . . , n}. Denote by an the number of
partitions. The partition {1, 2, 4, 5, . . . , n}{3} is encountered at
step:

(i) an−1 + O(1).

(ii) an−2 + O(1).

(iii) an − an−1 + O(1).

(iv) an − an−2 + O(1).

(v) none of the above.

(b) Denote by bn the number of all partitions in which all sets are of
size at least 2. We agree that b0 = 1. The sequence (bn) satisfies
the following recurrence for all sufficiently large n:

(i) bn =
∑n−1

k=1

(
n−1
k

)
bn−1−k.

(ii) bn =
∑n−1

k=1

(
n−1
k−1

)
bn−1−k.

(iii) bn =
∑n−1

k=1

(
n−1
k

)
bn−k.

(iv) bn =
∑n−1

k=1

(
n−1
k−1

)
bn−k.

(v) None of the above.

3. In this question we consider trees over n labeled vertices.

(a) Suppose first that n is even, and we are interested in trees, in
which vertices 1 and 2 are degree n/2 each, and all other n − 2
vertices are leaves.

We would like to go over this set of set with changes as small as
possible. More formally, let us define:

• A minimal change in a tree consists of removing one edge and
adding another (in such a way that we still have a tree).
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• A small change in a tree consists of removing two edges and
adding two others (in such a way that we still have a tree).

(i) It is possible to go over the class of trees in question with
minimal changes.

(ii) It is possible to go over the class of trees in question with
small changes, and so that from the last tree in the sequence
it will be possible to pass to the first in the sequence. However,
it is impossible to go over the class with minimal changes.

(iii) It is possible to go over the class of trees in question with
small changes, but not so that from the last tree in the se-
quence it will be possible to pass to the first in the sequence.
Also, it is impossible to go over the class with minimal changes.

(iv) It is impossible to go over the class of trees in question with
small changes.

(v) None of the above.

(b) The number of trees, in which all vertices are of degree either 1 or
2, is

(i)
(n− 1)!

2
.

(ii) (n− 1)!.

(iii)
n!

2
.

(iv) n!.

(v) none of the above.

4. Consider Young tableaux with 3 rows, so that the first row consists
of 2m squares, and the second and the third of m each. Denote by
n = 4m the total number of squares. When selecting a random Young
table of this shape in the way we have discussed in class, we first select
the square to hold n. Let pn be the probability that n should be placed
at the top right corner. Then pn −→

n→∞

(i)
2

7
.

(ii)
1

3
.
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(iii)
3

7
.

(iv)
1

2
.

(v) none of the above.
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Solutions

1. (a) When moving with minimal changes, each time we either add an
element or remove one. Hence the size of the set changes each
time from even to odd or vice versa. Hence, starting with the
empty set, and taking only every other set, we get exactly all sets
of even size.

In the lexicographic order, half the changes are of adding a single
element, and thus change the size of the set from even to odd
or vice versa. However, a fourth of the changes are of removing
an element and adding another one, and thus do not change the
parity of the size of the set. Hence, A1 yields both subsets of even
size (and not all of them) and subsets of odd size.

Both algorithms are, as we know, linear in 2n. Since the collection
of subsets of even size includes 2n−1 = Θ(2n) sets, the algorithms
are linear also as functions of the size of the collection we deal
with here.

Thus, (ii) is true.

(b) Recall that we can traverse the set of all subsets of any given size
by SIDEWISE changes. Moreover, it is clear by symmetry that
we can start with any subset of the given size. Hence, we can
traverse the collection in question by first going over subsets of
size 0 (which consists only of ∅, but this is immaterial), then add
any two elements and go over all subsets of size 2, and so forth.

For n = 8, the number of subsets of size 0, 2, 4, 6, 8 is 1, 28, 70, 28, 1,
respectively. Now UP and DOWN changes take us from subsets
of size 4 to subsets of size either 2 or 6. Since 70 > 28 + 28 + 1, it
is impossible to have after every subset of size 4 a different subset
of size 2 or 6.

Thus, (iii) is true.

(c) We need to select each set of even size with probability 1/2n−1.
Let A be such a set. Consider the first method. If n /∈ A, then we
clearly select A with the required probability. If n ∈ A, then we
select A if and only if at the first step we select the subset A−{n}
of {1, 2, . . . , n− 1}, which again happens with probability 1/2n−1.
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The second method selects only subsets of even size, but not with
the required probability. Take, for example, A = ∅. It is selected
if and only if we either select it to begin with, or select first a
singleton, which happens with probability n/2n, and the second
drawing dictates to remove the single element from that singleton.
The total probability is therefore

1

2n
+

n

2n
· 1

2
=

1 + n/2

2n
6= 1

2n−1 .

In both methods, most of the work is to select a uniformly random
subset of a set of size n− 1 or n, which takes Θ(n) time.

Thus, (i) is true.

2. (a) The partitions preceding {1, 2, 4, 5, . . . , n}{3} are exactly those
partitions in which the 3 elements 1, 2, 3 reside in the same set.
This set of partitions is in 1-1 correspondence with the set of all
partitions of a set of size n − 2. In fact, the 3 elements may be
considered as a single element, and we need to decide where to
place all the other n− 3 elements.

Thus, (ii) is true.

(b) Let us split the set of all partitions in question to classes, de-
pending on the number k of elements belonging to the same set
as does the element 1. This k needs to be at least 1 due to the
condition that all sets are of size at least 2. For each k, we have(
n−1
k

)
possibilities of choosing the elements in the same set as 1,

and for each of these we have bn−k−1 possibilities of partitioning
the remaining elements to sets of size at least 2. (Note that, in
fact, k cannot be n− 2, as then the set containing 1 will contain
n − 1 elements altogether, so the remaining element will make it
impossible to complete the partition as required. However, we do
not need to worry about it, as the fact that b1 = 0 will take care
of it.)

Thus, (i) is true.
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3. (a) A tree in the collection in question is determined by the set of n/2−
1 leaves connected to vertex 1. Hence it is in 1-1 correspondence
with the collection of all subsets of {3, 4, . . . , n} of size n/2 − 1.
Recall the algorithm for going over all subsets of size k of a set of
size n, and apply it with k and n replaced by n/2− 1 and n− 2,
respectively. Go over all such subsets, and consider for each such
subset V ′ that tree in our collection, in which vertex 1 is connected
to all vertices in V ′, and vertex 2 is connected to all vertices in
{3, 4, . . . , n}− V ′. To pass from V ′ to the next subset, we remove
one element and add another. The corresponding action in the
tree consists of disconnecting a certain leaf from 1 and connecting
it to 2, and disconnecting some other leaf from 2 and connecting
it to 1. Moreover, since the algorithm for going over all subsets of
some fixed size ends with a subset which is adjacent to the initial
subset, in our case it will be possible to pass from the last tree in
the sequence to the first by a small change.

It is impossible to go over the collection by minimal changes, as
no (non-trivial) minimal change will leave us in the family. In
fact, if we first discconect, say, 1 from one of the leaves connected
to it, then for this leaf to stay a leaf we need to connect it to 2,
so 1 and 2 will be connected to distinct numbers of leaves. If we
disconnect 1 and 2, then they cannot have degree n/2 after any
addition of an edge (different from the one we have removed).

Thus, (ii) is true.

(b) A tree with the required properties must be a path. To choose
a path, we need to choose first its two endpoints i and j, which
can be done in

(
n
2

)
ways. Then we need to choose the unique

neighbor of i, which can done in n− 2 ways, the second neighbor
of that vertex – which can be done in n− 3 ways – and so forth.
Altogether, the number of possibilities is(

n

2

)
· (n− 2)(n− 3) · . . . · 1 =

n!

2
.

Thus, (iii) is true.
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4. According to the formula developed in class, The probability for n to
be at a corner c is

P (c) =
1

n
·
∏ h(s)

h(s)− 1
,

where the product ranges over all squares at the same row or column
of c (not including c), and h(s) is the hook length of s. Now the
hook lengths of the first m squares in the first row are 2m + 2, 2m +
1, 2m, . . . ,m+3, and those of the next m−1 squares are m,m−1, . . . , 2.
Consequently:

pn =
1

n
· 2m + 2

2m + 1
· 2m + 1

2m
· . . . · m + 3

m + 2
· m

m− 1
· m− 1

m− 2
· . . . · 2

1

=
1

4m
· 2m + 2

m + 2
·m =

m + 1

2(m + 2)
=

n + 4

2n + 16
.

It follows that

pn −→
n→∞

1

2
.

Thus, (iv) is true.
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