
Final #2

Mark all correct answers in each of the following questions.
G = (N, T, R, S) denotes a context-free grammar. All grammars are

without useless letters.

4. (a) If G is unambiguous, then it is possible to add to R a rule (without
changing T and N , but perhaps changing the language accepted
by the grammar) in such a way that the grammar will still be
unambiguous.

(b) Suppose there exist at least two non-terminals A and B with ε-
productions A → ε and B → ε and L(G) is infinite. Then G is
ambiguous.

(c) If L(G1) = L(G2), then G2 is unambiguous if and only if G1 is
such.

(d) Suppose Gi = (Ni, T, Ri, Si), i = 1, 2, where N1 ∩ N2 = ∅. Let
G = (N1 ∪ N2 ∪ {S}, T, R1 ∪ R2 ∪ {S → S1S2}, S) (where we
assume that S /∈ N1 ∪N2). (By the way, L(G) = L(G1)L(G2).) If
G is unambiguous, then so are G1 and G2.

5. (a) The following algorithm has been suggested for elimination of
unit rules: First take all rules that are not unit rules. Next,

for each pair of non-terminals A, B with A
+

=⇒B, take all rules

that are obtained from non-unit rules by replacing any occur-
rences of A on the right-hand side of a rule by B. (For exam-
ple, the rule C → aAbBAba gives rise to three additional rules:
C → aBbBAba, C → aAbBBba, C → aBbBBba.) The algo-
rithm yields within finitely many steps a grammar without unit
rules that is equivalent to G.

1

(b) Suppose that N = {S, A}. The grammar rules are

S → AAS | ASa | aba ,

A → α1 | α2 | . . . | α10 ,

for some α1, α2, . . . , α10 ∈ (N ∪ T)∗ − {ε, S, A}. We employ the
algorithm discussed in class for eliminating left-recursion (with
A1 = S, A2 = A). Then the grammar we obtain includes at most
32 rules.

(c) Consider the algorithm for constructing a grammar in Chomsky
Normal Form, that is equivalent to a given grammar without ε-
rules and unit rules. There exists a function f : N3 → N (where N
denotes the set of positive integers) such that, denoting by R′ the
set of rules of the new grammar, we have |R′| ≤ f(|N |, |T |, |R|).

(d) Suppose all rules in R are of the form A → α, where α ∈
T ∗∪T ∗NT ∗∪T ∗NT ∗NT ∗, and there are no ε-rules and unit rules.
A slight modification of the CYK algorithm yields a parsing algo-
rithm that still works in time O(n3) for words on length n.

6. (a) For any α ∈ (N ∪T)∗−{ε}, denote by DIRECT FIRST(α) the first
letter of α. If R includes no ε-rules, and DIRECT FIRST(α1) 6=
DIRECT FIRST(α2) for every non-terminal A and rules A → α1

and A → α2, then G is LL(1).

(b) The number of stages (not including stage 0) in the algorithm
presented in class for computing the FOLLOW sets is at most
|N | · |T |. It is impossible to reduce this upper bound in general.

(c) If R includes the rules A → BAB and A → Bab, then G is not
LL(1).

(d) If G is LL(k) for some k ≥ 1, then for every w ∈ T ∗ there exists
exactly one parse tree producing w.

2

Solutions

4. (a) The grammar given by the rules

S → aS | bS | ε ,

accepts the language L((a∪b)∗), and is easily seen to be unambigu-
ous (and even LL(1)). By adding any rule, we make it ambiguous.
Indeed, take any sequence of derivations which includes the new
rule, that produces some word w ∈ {a, b}∗. Since w belongs to the
language accepted by the original grammar, there is a parse tree
producing w that does not use the new rule. Thus, w is produced
by (at least) two parse trees, which means that the new grammar
is ambiguous.

(b) The grammar given by the rules

S → AB ,

A → aA | ε ,

B → bB | ε ,

accepts the language L(a∗b∗) and satisfies the required properties.
It is easy to see that the grammar is unambiguous. (In fact, it is
even LL(1).)

(c) The grammar defined by the rules

S → aS | ε ,

accepts the language L(a∗) and is clearly unambiguous, while the
grammar defined by the rules

S → aS | aaS | ε ,

accepts the same language and is ambiguous (as the word aa, for
example, may be produced by two distinct parse trees).

(d) Let us show that, say, G1 is unambiguous. Let w be any word
in L(G1). Take any word w′ is L(G2). Then ww′ ∈ L(G), and
there is a unique parse tree producing ww′. The root of this tree
is labelled by S, and it has two children, labelled by S1 and S2.
The uniqueness of the tree means in particular that the subtree
rooted at S1 is unique. Thus, there exists a unique parse tree for
G1 producing w. Hence G1 is unambiguous. The proof for G2 is
analogous.

3

Thus, only (d) is true.

5. (a) All parsing options in the suggested grammar are possible in the
original grammar as well using suitable sequences of derivations,
and therefore the language accepted by the suggested grammar
is contained in that accepted by the original grammar. However,
the algorithm fails to capture some of the possibilities of the given
grammar. For example, applying the suggested algorithm to the
grammar defined by the rules

S → A | b ,

A → a ,

we obtain the grammar defined by

S → b ,

(with the letter A, which became useless, omitted). The first
grammar accepts the language {a, b} while the second accepts {b}.

(b) Since the right-hand side of no rule for S starts with S, we
start dealing with the rules for A. Suppose k out of the words
α1, α2, . . . , α10 start with S. Each of the k rules A → αi with
these αi’s is replaced by three rules, in which the leading S is
replaced by the right-hand sides of the rules for S, namely AAS,
ASa and aba. At this stage we have 3k+(10−k) rules for A. Out
of the 3k new rules, the right-hand side of 2k rules starts with A.
Let l be the number of such rules among the 10− k original rules
for A. Thus, the right-hand side of 2k + l of the rules for A start
with A, while that of the other 10 − l does not. Now we add a
new non-terminal A′ with 2k + l + 1 rules (including A′ → ε) for
it, whereas for A we have only 10− l rules left.

Altogether, in the new grammar there are 3+(2k+l+1)+(10−l) =
2k + 14 rules. In principle, this may be as large as 34. However,
this bound is obtained for k = 10 only. If k = 10, then the non-
terminal A is useless. Therefore k ≤ 9, so that the new grammar
has at most 32 rules.

(c) The numbers |N |, |T | and |R| are unrelated to the lengths of the
right-hand sides of the rules in the grammar. Since rules of the

4

form A → B1B2 . . . Bk are replaced by k − 2 rules, no function as
required may possibly exist. For example, suppose the grammar
has a single rule, say S → w, where w is a word of length k in T ∗.
We first add |T | non-terminals to N , each corresponding to one of
the terminals, with a single corresponding rule for each, and then
replace the resulting rule S → B1B2 . . . Bk by k − 2 rules. Thus,
in the given grammar we have |N | = 1, arbitrary fixed |T | and
|R| = 1, yet |R′| = |N |+ k − 2 may be arbitrarily large.

(d) We proceed as in the CYK algorithm. Consider a typical stage,
when we have just finished finding out for which non-terminals A
and subwords u of length up to some k of the input word w it is the
case that A

∗
=⇒u. We need now to find out the same for subwords

u of length k + 1. To find out whether A
∗

=⇒u, we go over all

rules for A. Consider a typical rule, say A → v1B1v2B2v3, where
v1, v2, v3 ∈ T ∗ and B1, B2 ∈ N . (If the right-hand side includes
less than two non-terminals, the problem is even simpler.) If v1

does not coincide with the prefix of corresponding length of u,
or v3 does not coincide with the suffix of corresponding length of
u, there is nothing to check. If both coincide, we need to check
whether B1v2B2

∗
=⇒u′, where u′ is the same as u, but with the

prefix v1 and the suffix v3 removed. For each j between 1 and
|u′|−1−|v2| we need to check whether it is the case that B1

∗
=⇒u′

1,

B2
∗

=⇒u′
2, where u′

1 and u′
2 are the prefix of length j and suffix of

length |u′| − j − |v2| of u′, respectively, and the subword of u′ in
between them coincides with v2. If this is the case for some j,
then the answer is positive. Obviously, the runtime is the same as
that of the CYK algorithm.

Thus, (b) and (d) are true.

6. (a) Consider the grammar defined by the rules:

S → A | a ,

A → a ,

We have DIRECT FIRST(A) = A 6= a = DIRECT FIRST(a), so

5

that the grammar satisfies the property in question. However, the
grammar is obviously not LL(1). (In fact, it is even ambiguous.)

(b) The asserted upper bound is correct, but a much better bound ex-
ists. In fact, in the beginning we place in FOLLOW(A) those termi-
nals a for which there exists a rule of the form B → αAaβ. In the
following stages, the initial sets grow due to the observation that, if
B → αAβ, where Nullable(β), then FOLLOW(A) ⊇ FOLLOW(B).
Thus, if a terminal a belongs to the FOLLOW set of some non-
terminal A, then it will be known within at most |N | − 1 stages.

(c) If FIRST(B) 6= ∅ then FIRST(BAB) ∩ FIRST(Bab) 6= ∅, so the
grammar is not LL(1). Thus, suppose FIRST(B) = ∅. The rule
A → Bab shows then that a ∈ FIRST(A). It follows that a belongs
both to FIRST(BAB) and to FIRST(Bab), and again the grammar
is not LL(1).

(d) Only words in L(G) have parse trees producing them. Hence,
unless L(G) = T ∗, there are words in T ∗ with no parse trees
producing them.

Thus, only (c) is true.

6

