
Final #1

Mark the correct answer in each part of the following questions.

1. We are working with a system implementing the IEEE standard with
single precision and rounding to the nearest. Denote by ⊕ the binary
operation of addition, as performed on floating point numbers in our
system.

(a) The largest positive integer n for which 2n ⊕ n is a floating point
number and 2n ⊕ n > 2n is

(i) 23.

(ii) 24.

(iii) 27.

(iv) 28.

(v) None of the above.

(b) Consider the approximation formula

f ′(x) ≈ f(x+ h)− f(x)

h

(h a non-zero number close to 0) for estimating f ′(x). Suppose we
use the formula to estimate f ′(1) for the function f(x) =

√
x. For

k = 1, 2, . . ., denote by ek the absolute value of the error when we
take h = kε. Assume that, when the system is asked to compute√
a for some floating point number a, it returns the floating point

closest to
√
a.

(i) e1 < e2 < e3.

(ii) e1 > e2 > e3.

(iii) e1 > e3 > e2.
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(iv) e3 > e1 > e2.

(v) None of the above.

2. (a) Consider the equation:

π

3
sinx = x.

Notice that ξ = π/6 is a solution and that, for each α 6= 0, the
equation is equivalent to:

π

3α
sinx+

α− 1

α
x = x.

Thus, defining

gα(x) =
π

3α
sinx+

α− 1

α
x,

the original equation may be tackled using a fixed point iteration
for any g. Suppose we start from a point sufficiently close to ξ.

(i) If α > 1 − π
2
√

3
, then the convergence is linear, but becomes

slower as α increases. For α = 1 − π
2
√

3
the convergence is

quadratic. For 1
2
− π

4
√

3
< α < 1 − π

2
√

3
the convergence is

linear. For α < 1
2
− π

4
√

3
the point ξ is not attracting.

(ii) The convergence is at least linear for every α 6= 0 and
quadratic for at least one α.

(iii) The convergence is quadratic (or faster) for no α 6= 0.

(iv) If α > 1
2
− π

4
√

3
, then the convergence is linear. If α = 1

2
− π

4
√

3
,

then the convergence is at least quadratic.

(v) None of the above.

(b) Newton’s method is employed to solve the equation cos (πex)+1 = 0.
If we start sufficiently close to the root ξ = 0 of the equation then:

(i) The convergence is linear, but slightly slower than that of the
bisection method.

(ii) The convergence is linear, with speed almost the same as that
of the bisection method.
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(iii) The convergence is linear, but slightly faster than that of
the bisection method.

(iv) The convergence is quadratic.

(v) None of the above.

3. (a) We approximate
∫ π/12

0
tg 4xdx by dividing the interval [0, π/12]

into n sub-intervals, not necessarily of equal length, and using one
of the rules for each of these intervals. Let E1 be the total error if
the rule used is the rectangle rule, E2 – if it is the midpoint rule,
and E3 – if it is Simpson’s rule. The signs of the errors are as
follows.

(i) E1 > 0, E2 > 0, E3 > 0.

(ii) E1 < 0, E2 > 0, E3 > 0.

(iii) E1 > 0, E2 > 0, E3 < 0.

(iv) The sign of at least one of the Ei’s depends in a non-trivial
way on n and the division points.

(v) None of the above.

(b) We estimate
∫ 1

0
ln(x(x+1))dx by dividing the interval [0, 1] into n

sub-intervals of equal length, and using the rectangle rule for each
of them, but with the right endpoint of each sub-interval instead
of its left endpoint. Let E be the error. For sufficiently large n

(i) |E| becomes arbitrarily large.

(ii) |E| ≈ C
n

for some constant C > 0.

(iii) |E| ≈ ln 4πn
2n

.

(iv) |E| ≈ C
lnn

for some constant C > 0.

(v) None of the above.

(c) We estimate
∫ π/3

0

√
cosxdx by dividing the interval [0, π/3] into n

sub-intervals of equal length, and using the midpoint rule for each
of them. Let E be the error. Then:

(i) E ≈ − π2
√

6
864n2 .

(ii) E ≈ − π2
√

2
864n2 .

(iii) E ≈ π2
√

2
864n2 .
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(iv) E ≈ π2
√

6
864n2 .

(v) None of the above.

4. We are interested in finding an approximation formula of the form∫ 1

0

f(x)dx ≈ w1f(1/3) + w2f(x2),

with some appropriate weights w1, w2 and point x2 ∈ [0, 1], that will be
completely accurate in case f is a polynomial of degree not exceeding 2.

(a) We must choose:

(i) w1 = w2 = 1/2, x2 = 2/3.

(ii) w1 = 1/3, w2 = 2/3, x2 = 1/2.

(iii) w1 = w2 = 1/2, x2 = 1/2.

(iv) w1 = 3/4, w2 = 1/4, x2 = 1.

(v) None of the above.

(b) Suppose there exist w1, w2, x2 for which the above requirements
are satisfied. Let 〈·, ·〉 be the inner product defined on the space
of all real polynomials by

〈Q1, Q2〉 =

∫ 1

0

Q1(x)Q2(x)dx, Q1, Q2 ∈ R[x].

Consider the polynomials

P1(x) = x− x2, P2(x) = (x− 1/3)(x− x2).

(i) Neither one of the polynomials Pi is orthogonal to all constant
polynomials.

(ii) The polynomial P1 is not orthogonal to all constant polyno-
mials. The polynomial P2 is orthogonal to all constant poly-
nomials, but not to all polynomials of degree not exceeding 1.

(iii) The polynomial P1 is orthogonal to all polynomials of de-
gree not exceeding 1, but not to all polynomials of degree
not exceeding 2. The polynomial P2 is orthogonal to all con-
stant polynomials, but not to all polynomials of degree not
exceeding 1.

4



(iv) The polynomial P1 is orthogonal to all polynomials of degree
not exceeding 2, but not to all polynomials of degree not ex-
ceeding 3. The polynomial P2 is orthogonal to all polynomials
of degree not exceeding 1, but not to all polynomials of degree
not exceeding 2.

(v) None of the above.
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Solutions

1. (a) Integers in the range [16, 31] are of the form 1. b1b2b3b40 . . . 0︸ ︷︷ ︸
23

·24.

For any n ∈ [16, 31], the addition of n to 2n requires shifting
the representation of n by n− 4 bits to the right, to obtain both
numbers represented with the same exponent. As long as n− 4 ≤
23, we clearly have 2n⊕n > 2n, because the most significant digit
(the implicit 1 to the left of the binary point) of n is still shifted to
one of the first 23 digits after the binary point. For n = 28, which
requires 24 shifts, the representation is 0. 0 . . . 0︸ ︷︷ ︸

23

111 · 228. Hence

228 + 28 = 1 · 228 + 0. 0 . . . 0︸ ︷︷ ︸
23

111 · 228 = 1. 0 . . . 0︸ ︷︷ ︸
23

111 · 228,

which is rounded to

1. 0 . . . 0︸ ︷︷ ︸
22

1 · 228 = 228 + 25 > 228.

For n > 28, the shift will be of at least 25 places to the right to
obtain the same exponent for n, leading to 0. 0 . . . 0︸ ︷︷ ︸

23

01b1 . . . · 2n

(with the leading 1 where shown or even farther to the right). It
follows that 2n ⊕ n = 2n.

Thus, (iv) is true.

(b) Clearly, f ′(1) = 1
2
. Using Taylor’s approximation for f(x + h),

where x = 1, we obtain f(1 +h) =
√

1 + h ≈ 1 + 1
2
(1 +h−1). For

single precision, ε = 2−23, so h assumes the values 2−23, 2 · 2−23, 3 ·
2−23, which will be used for evaluating e1, e2, e3, respectively. The
general expression we are interested in is

ek = |f ′(1)− round ((f(1⊕ k ⊗ ε)	 f(1))� (k ⊗ ε))| , k = 1, 2, 3.

(In fact, when we write f(a) for some floating point number a,
we refer to the approximation provided for f(a) by the system.)
Hence:

ek ≈
∣∣∣∣12 − round

((
1⊕ 1

2
⊗ (1⊕ k ⊗ 2−23 	 1)	 1

)
�
(
k ⊗ 2−23

))∣∣∣∣ ,
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for k = 1, 2, 3. Now we complete the calculation for each k sepa-
rately:

• k = 1:

round

((
1⊕ 1

2
⊗ (1⊕ 2−23 	 1)	 1

)
� 2−23

)

= round

((
1⊕ 1

2
⊗ 2−23 	 1

)
� 2−23

)
= round

((
1⊕ 2−24 	 1

)
� 2−23

)
= round

(
0� 2−23

)
= 0.

Thus,

e1 =

∣∣∣∣12 − 0

∣∣∣∣ =
1

2
.

• k = 2:

round

((
1⊕ 1

2
⊗ (1⊕ 2⊗ 2−23 	 1)	 1

)
�
(
2⊗ 2−23

))

= round

((
1⊕ 1

2
⊗ 2−22 	 1

)
� 2−22

)
= round

((
1⊕ 2−23 	 1

)
� 2−22

)
= round

(
2−23 � 2−22

)
=

1

2
.

Thus,

e2 =

∣∣∣∣12 − 1

2

∣∣∣∣ = 0.
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• k = 3:

round

((
1⊕ 1

2
⊗ (1⊕ 3⊗ 2−23 	 1)	 1

)
�
(
3⊗ 2−23

))

= round

((
1⊕ 1

2
⊗ 3⊗ 2−23 	 1

)
�
(
3⊗ 2−23

))
= round

((
1⊕ 3⊗ 2−24 	 1

)
�
(
3⊗ 2−23

))
= round

(
2−22 �

(
3⊗ 2−23

))
= round

(
2

3

)
.

Thus,

e3 =

∣∣∣∣12 − round

(
2

3

)∣∣∣∣ ≈ 1

6
.

Thus, (iii) is true.

2. (a) We have

g′α(x) =
π

3α
cosx+

α− 1

α
, (α 6= 0),

and substituting ξ = π/6 we obtain:

g′α(π/6) =
π

3α
cos

π

6
+
α− 1

α
= 1− 1

α

(
1− π

2
√

3

)
, (α 6= 0).

(1)
If α = 1 − π

2
√

3
then g′α(π/6) = 0, so that the convergence is

quadratic. If α > 1 − π
2
√

3
then 0 < g′α(π/6) < 1, so that the

convergence is linear. In this case the error decreases (almost) as
a geometric series with ratio q = g′α(π/6), and since the right-hand
hide of (1) increases with α in this range, therefore the convergence
becomes slower as α increases. If 1

2
− π

4
√

3
< α < 1 − π

2
√

3
then

−1 < g′α(π/6) < 0, and the convergence is again linear. If α <
1
2
− π

4
√

3
then g′α(π/6) < −1. Since |g′α(π/6)| > 1, and the fixed

point ξ is not attracting.

Thus, (i) is true.
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(b) We have
f ′(x) = −πex sin(πex)

and
f ′′(x) = −πex sin(πex)− (πex)2 cos(πex),

and in particular f ′(ξ) = 0 and f ′′(ξ) = π2. Thus, ξ = 0 is root
of f of order 2. The iteration function corresponding to Newton’s
method is:

g(x) = x− f(x)

f ′(x)
= x+

cos(πex) + 1

πex sin(πex)
.

Now

g′(x) =
(πex cos(πex) + sin(πex))e−x

(cos(πex)− 1)π
, (2)

and a routine calculation yields g′(x) = lim
x→0

g′(x) =
1

2
. Hence the

convergence is linear, with speed almost the same as that of the
bisection method.

Thus, (ii) is true.

3. (a) Let x0 = 0 < x1 < . . . < xn = π/12 be the division points. The
errors E1,i, E2,i, and E3,i in each sub-interval [xi−1, xi], 1 ≤ i ≤ n,
when using the rectangle rule, the midpoint rule and Simpson’s
rule, respectively, are:

E1,i = f ′(η1,i)
(xi − xi−1)

2

2
, η1,i ∈ (xi−1, xi),

E2,i = f ′′(η2,i)
(xi − xi−1)

3

24
, η2,i ∈ (xi−1, xi),

E3,i = −f (4)(η3,i)
(xi − xi−1)

5

90 · 25
, η3,i ∈ (xi−1, xi).

The corresponding total errors are:

E1 =
n∑
i=1

E1,i, E2 =
n∑
i=1

E2,i, E3 =
n∑
i=1

E3,i.
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One verifies by induction that f (k)(x) is a polynomial of degree
k + 1 with non-negative coefficients in tg 4x for each k ≥ 0. For
example,

f ′(x) =
4

cos2 4x
= 22( tg 24x+ 1),

f ′′(x) = 25( tg 34x+ tg 4x),

and
f (4)(x) = 211

(
3 tg 54x+ 5 tg 34x+ 2 tg 4x

)
.

In particular, since tg 4x is positive throughout the interval, so is
f (k)(x) for every k. Hence, E1 > 0, E2 > 0, E3 < 0.

Thus, (iii) is true.

(b) Since ln(x(x+ 1)) = lnx+ ln(x+ 1), we have:∫ 1

0

ln(x(x+ 1))dx =

∫ 1

0

lnxdx+

∫ 1

0

ln(x+ 1)dx. (3)

Moreover, when approximating the left-hand side of (3) by the
rectangle rule (or any other rule for that matter) we obtain the
sum of the approximations obtained for the two integrals on the
right-hand side. Note that the first integral on the right-hand side
of (3) was studied in class. When using the rectangle rule with
the right endpoint of each sub-interval instead of its left endpoint,
it is approximated as follows:∫ 1

0

lnxdx ≈ 1

n

n∑
i=1

ln
i

n
=

1

n
lnn!− lnn. (4)

Similarly, for the second integral on the right-hand side of (3) we
have: ∫ 1

0

ln(x+ 1)dx ≈ 1

n

n∑
i=1

ln

(
i

n
+ 1

)
=

1

n
ln(2n)!− 1

n
lnn!− lnn. (5)

Substituting (4) and (5) in the right-hand side of (3), we obtain:∫ 1

0

ln(x(x+ 1))dx ≈ 1

n
ln(2n)!− 2 lnn. (6)
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Now, by Stirling’s formula (2n)! ≈
√

4πn
(

2n
e

)2n
, and therefore:∫ 1

0

ln(x(x+ 1))dx ≈ 1

2n
ln 4πn+ 2 ln 2− 2. (7)

Since
∫

lnxdx = x lnx− x+ c, we have∫ 1

0

ln(x(x+ 1))dx = [x lnx− x+ (x+ 1) ln(x+ 1)− (x+ 1)]10

= 2 ln 2− 2. (8)

By (7) and (8):

E ≈ − 1

2n
ln 4πn.

Thus, (iii) is true.

(c) Let f(x) =
√

cosx. For 1 ≤ i ≤ n, the error in the sub-interval

[π(i−1)
3n

, πi
3n

] is:

Ei =
f ′′(ηi)

24
·
( π

3n

)3

,

(
ηi ∈

(
π(i− 1)

3n
,
πi

3n

))
.

Hence the total error is:

E =
n∑
i=1

Ei =
n∑
i=1

f ′′(ηi)

24

( π
3n

)3

=
1

24

( π
3n

)2
n∑
i=1

f ′′(ηi) ·
π

3n
.

The sum on the right-hand side is a Riemann sum of the function
f ′′ on the interval [0, π

3
]. Thus,

E ≈ 1

24

( π
3n

)2
∫ π/3

0

f ′′(x)dx =
1

24

( π
3n

)2 (
f ′
(π

3

)
− f ′(0)

)
.

(9)
Now f ′(x) = − sinx

2
√

cosx
, so that (9) yields

E ≈ 1

24

( π
3n

)2
(
− sin π/3

2
√

cos π/3
+

sin 0

2
√

cos 0

)
= − π

2
√

6

864n2
.

Thus, (i) is true.
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4. (a) For the formula in question to be exact for all polynomials up to
degree 2, it needs to hold for the polynomials 1, x, x2. Namely,
the following equalities need to hold:

w1 · 1 + w2 · 1 = 1

w1 · 1
3

+ w2 · x2 = 1
2

w1 · 1
9

+ w2 · x2
2 = 1

3

A routine calculation shows that the choice x2 = 1, w1 = 3/4 and
w2 = 1/4 indeed yields a solution of the system.

Thus, (iv) is true.

(b) P1 is not orthogonal to all constant polynomials. In fact

〈P1, 1〉 =

∫ 1

0

P1(x)dx

= w1P1(1/3) + w2P1(x2)

= w1P1(1/3) = 3/4 · (1/3− 1) 6= 0.

The polynomial P2 is orthogonal to all constant polynomials. In-
deed, for any constant c ∈ R

〈P2, c〉 =

∫ 1

0

cP2(x)dx = w1cP2(1/3) + w2cP1(x2) = 0.

However, P2 is not orthogonal to all polynomials of degree not
exceeding 1. For example,

〈P2, x− 1/3〉 =

∫ 1

0

(x− 1/3)2(x− 1)dx < 0,

since the only zeros of the integrand (x−1/3)2(x−1) are x = 1/3
or x = 1, and for all other values of x ∈ [0, 1] it is negative.

Thus, (ii) is true.
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