Final #1

Mark the correct answer in each part of the following questions.

- 1. We are working with a system implementing the IEEE standard with single precision and rounding to the nearest. Denote by \oplus the binary operation of addition, as performed on floating point numbers in our system.
 - (a) The largest positive integer n for which $2^n \oplus n$ is a floating point number and $2^n \oplus n > 2^n$ is
 - (i) 23.
 - (ii) 24.
 - (iii) 27.
 - (iv) 28.
 - (v) None of the above.
 - (b) Consider the approximation formula

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

(*h* a non-zero number close to 0) for estimating f'(x). Suppose we use the formula to estimate f'(1) for the function $f(x) = \sqrt{x}$. For $k = 1, 2, \ldots$, denote by e_k the absolute value of the error when we take $h = k\varepsilon$. Assume that, when the system is asked to compute \sqrt{a} for some floating point number a, it returns the floating point closest to \sqrt{a} .

- (i) $e_1 < e_2 < e_3$. (ii) $e_1 > e_2 > e_3$.
- (iii) $e_1 > e_3 > e_2$.

- (iv) $e_3 > e_1 > e_2$.
- (v) None of the above.
- 2. (a) Consider the equation:

$$\frac{\pi}{3}\sin x = x.$$

Notice that $\xi = \pi/6$ is a solution and that, for each $\alpha \neq 0$, the equation is equivalent to:

$$\frac{\pi}{3\alpha}\sin x + \frac{\alpha - 1}{\alpha}x = x$$

Thus, defining

$$g_{\alpha}(x) = \frac{\pi}{3\alpha}\sin x + \frac{\alpha - 1}{\alpha}x$$

the original equation may be tackled using a fixed point iteration for any g. Suppose we start from a point sufficiently close to ξ .

- (i) If $\alpha > 1 \frac{\pi}{2\sqrt{3}}$, then the convergence is linear, but becomes slower as α increases. For $\alpha = 1 - \frac{\pi}{2\sqrt{3}}$ the convergence is quadratic. For $\frac{1}{2} - \frac{\pi}{4\sqrt{3}} < \alpha < 1 - \frac{\pi}{2\sqrt{3}}$ the convergence is linear. For $\alpha < \frac{1}{2} - \frac{\pi}{4\sqrt{3}}$ the point ξ is not attracting.
- (ii) The convergence is at least linear for every $\alpha \neq 0$ and quadratic for at least one α .
- (iii) The convergence is quadratic (or faster) for no $\alpha \neq 0$.
- (iv) If $\alpha > \frac{1}{2} \frac{\pi}{4\sqrt{3}}$, then the convergence is linear. If $\alpha = \frac{1}{2} \frac{\pi}{4\sqrt{3}}$, then the convergence is at least quadratic.
- (v) None of the above.
- (b) Newton's method is employed to solve the equation $\cos(\pi e^x) + 1 = 0$. If we start sufficiently close to the root $\xi = 0$ of the equation then:
 - (i) The convergence is linear, but slightly slower than that of the bisection method.
 - (ii) The convergence is linear, with speed almost the same as that of the bisection method.

- (iii) The convergence is linear, but slightly faster than that of the bisection method.
- (iv) The convergence is quadratic.
- (v) None of the above.
- (a) We approximate $\int_0^{\pi/12} \operatorname{tg} 4x \, dx$ by dividing the interval $[0, \pi/12]$ 3. into n sub-intervals, not necessarily of equal length, and using one of the rules for each of these intervals. Let E_1 be the total error if the rule used is the rectangle rule, E_2 – if it is the midpoint rule, and E_3 – if it is Simpson's rule. The signs of the errors are as follows.
 - (i) $E_1 > 0, E_2 > 0, E_3 > 0$.
 - (ii) $E_1 < 0, E_2 > 0, E_3 > 0.$
 - (iii) $E_1 > 0, E_2 > 0, E_3 < 0.$
 - (iv) The sign of at least one of the E_i 's depends in a non-trivial way on n and the division points.
 - (v) None of the above.
 - (b) We estimate $\int_0^1 \ln(x(x+1)) dx$ by dividing the interval [0, 1] into n sub-intervals of equal length, and using the rectangle rule for each of them, but with the right endpoint of each sub-interval instead of its left endpoint. Let E be the error. For sufficiently large n
 - (i) |E| becomes arbitrarily large.
 - (ii) $|E| \approx \frac{C}{n}$ for some constant C > 0.

 - (iii) $|E| \approx \frac{\ln 4\pi n}{2n}$. (iv) $|E| \approx \frac{C}{\ln n}$ for some constant C > 0.
 - (v) None of the above.
 - (c) We estimate $\int_0^{\pi/3} \sqrt{\cos x} dx$ by dividing the interval $[0, \pi/3]$ into n sub-intervals of equal length, and using the midpoint rule for each of them. Let E be the error. Then:

(i)
$$E \approx -\frac{\pi^2 \sqrt{6}}{864n^2}$$
.
(ii) $E \approx -\frac{\pi^2 \sqrt{2}}{864n^2}$.
(iii) $E \approx \frac{\pi^2 \sqrt{2}}{864n^2}$.

(iv)
$$E \approx \frac{\pi^2 \sqrt{6}}{864n^2}$$
.
(v) None of the above.

4. We are interested in finding an approximation formula of the form

$$\int_0^1 f(x)dx \approx w_1 f(1/3) + w_2 f(x_2).$$

with some appropriate weights w_1, w_2 and point $x_2 \in [0, 1]$, that will be completely accurate in case f is a polynomial of degree not exceeding 2.

- (a) We must choose:
 - (i) $w_1 = w_2 = 1/2, x_2 = 2/3.$ (ii) $w_1 = 1/3, w_2 = 2/3, x_2 = 1/2.$ (iii) $w_1 = w_2 = 1/2, x_2 = 1/2.$ (iv) $w_1 = 3/4, w_2 = 1/4, x_2 = 1.$ (v) None of the above.
- (b) Suppose there exist w_1, w_2, x_2 for which the above requirements are satisfied. Let $\langle \cdot, \cdot \rangle$ be the inner product defined on the space of all real polynomials by

$$\langle Q_1, Q_2 \rangle = \int_0^1 Q_1(x) Q_2(x) dx, \qquad Q_1, Q_2 \in \mathbf{R}[x].$$

Consider the polynomials

$$P_1(x) = x - x_2,$$
 $P_2(x) = (x - 1/3)(x - x_2).$

- (i) Neither one of the polynomials P_i is orthogonal to all constant polynomials.
- (ii) The polynomial P_1 is not orthogonal to all constant polynomials. The polynomial P_2 is orthogonal to all constant polynomials, but not to all polynomials of degree not exceeding 1.
- (iii) The polynomial P_1 is orthogonal to all polynomials of degree not exceeding 1, but not to all polynomials of degree not exceeding 2. The polynomial P_2 is orthogonal to all constant polynomials, but not to all polynomials of degree not exceeding 1.

- (iv) The polynomial P_1 is orthogonal to all polynomials of degree not exceeding 2, but not to all polynomials of degree not exceeding 3. The polynomial P_2 is orthogonal to all polynomials of degree not exceeding 1, but not to all polynomials of degree not exceeding 2.
- (v) None of the above.

Solutions

1. (a) Integers in the range [16, 31] are of the form $1.\underbrace{b_1b_2b_3b_40\ldots 0}_{23} \cdot 2^4$.

For any $n \in [16, 31]$, the addition of n to 2^n requires shifting the representation of n by n - 4 bits to the right, to obtain both numbers represented with the same exponent. As long as $n - 4 \leq 23$, we clearly have $2^n \oplus n > 2^n$, because the most significant digit (the implicit 1 to the left of the binary point) of n is still shifted to one of the first 23 digits after the binary point. For n = 28, which requires 24 shifts, the representation is $0.0..0111 \cdot 2^{28}$. Hence

$$2^{28} + 28 = 1 \cdot 2^{28} + 0 \underbrace{0 \dots 0}_{23} 111 \cdot 2^{28} = 1 \underbrace{0 \dots 0}_{23} 111 \cdot 2^{28},$$

which is rounded to

$$1 \cdot \underbrace{0 \dots 0}_{22} 1 \cdot 2^{28} = 2^{28} + 2^5 > 2^{28}.$$

For n > 28, the shift will be of at least 25 places to the right to obtain the same exponent for n, leading to $0.0.001b_1...2^n$

(with the leading 1 where shown or even farther to the right). It follows that $2^n \oplus n = 2^n$.

Thus, (iv) is true.

(b) Clearly, $f'(1) = \frac{1}{2}$. Using Taylor's approximation for f(x + h), where x = 1, we obtain $f(1+h) = \sqrt{1+h} \approx 1 + \frac{1}{2}(1+h-1)$. For single precision, $\varepsilon = 2^{-23}$, so h assumes the values 2^{-23} , $2 \cdot 2^{-23}$, $3 \cdot 2^{-23}$, which will be used for evaluating e_1, e_2, e_3 , respectively. The general expression we are interested in is

$$e_k = |f'(1) - \operatorname{round} \left(\left(f(1 \oplus k \otimes \varepsilon) \ominus f(1) \right) \oslash (k \otimes \varepsilon) \right) |, \ k = 1, 2, 3$$

(In fact, when we write f(a) for some floating point number a, we refer to the approximation provided for f(a) by the system.) Hence:

$$e_k \approx \left| \frac{1}{2} - \operatorname{round} \left(\left(1 \oplus \frac{1}{2} \otimes (1 \oplus k \otimes 2^{-23} \oplus 1) \oplus 1 \right) \oslash \left(k \otimes 2^{-23} \right) \right) \right|$$

for k = 1, 2, 3. Now we complete the calculation for each k separately:

•
$$k = 1$$
:

$$\operatorname{round}\left(\left(1 \oplus \frac{1}{2} \otimes (1 \oplus 2^{-23} \oplus 1) \oplus 1\right) \oslash 2^{-23}\right)$$
$$= \operatorname{round}\left(\left(1 \oplus \frac{1}{2} \otimes 2^{-23} \oplus 1\right) \oslash 2^{-23}\right)$$
$$= \operatorname{round}\left((1 \oplus 2^{-24} \oplus 1) \oslash 2^{-23}\right)$$
$$= \operatorname{round}\left(0 \oslash 2^{-23}\right) = 0.$$

Thus,

$$e_1 = \left| \frac{1}{2} - 0 \right| = \frac{1}{2}.$$

•
$$k = 2$$
:
round $\left(\left(1 \oplus \frac{1}{2} \otimes (1 \oplus 2 \otimes 2^{-23} \oplus 1) \oplus 1 \right) \oslash (2 \otimes 2^{-23}) \right)$
 $= \operatorname{round} \left(\left(1 \oplus \frac{1}{2} \otimes 2^{-22} \oplus 1 \right) \oslash 2^{-22} \right)$
 $= \operatorname{round} \left((1 \oplus 2^{-23} \oplus 1) \oslash 2^{-22} \right)$
 $= \operatorname{round} \left(2^{-23} \oslash 2^{-22} \right) = \frac{1}{2}.$

Thus,

$$e_2 = \left| \frac{1}{2} - \frac{1}{2} \right| = 0.$$

•
$$k = 3$$
:
round $\left(\left(1 \oplus \frac{1}{2} \otimes (1 \oplus 3 \otimes 2^{-23} \oplus 1) \oplus 1 \right) \oslash (3 \otimes 2^{-23}) \right)$
 $= \operatorname{round} \left(\left(1 \oplus \frac{1}{2} \otimes 3 \otimes 2^{-23} \oplus 1 \right) \oslash (3 \otimes 2^{-23}) \right)$
 $= \operatorname{round} \left((1 \oplus 3 \otimes 2^{-24} \oplus 1) \oslash (3 \otimes 2^{-23}) \right)$
 $= \operatorname{round} \left(2^{-22} \oslash (3 \otimes 2^{-23}) \right)$
 $= \operatorname{round} \left(\frac{2}{3} \right).$

Thus,

$$e_3 = \left|\frac{1}{2} - \operatorname{round}\left(\frac{2}{3}\right)\right| \approx \frac{1}{6}.$$

Thus, (iii) is true.

2. (a) We have

$$g'_{\alpha}(x) = \frac{\pi}{3\alpha}\cos x + \frac{\alpha - 1}{\alpha}, \qquad (\alpha \neq 0),$$

and substituting $\xi = \pi/6$ we obtain:

$$g'_{\alpha}(\pi/6) = \frac{\pi}{3\alpha} \cos\frac{\pi}{6} + \frac{\alpha - 1}{\alpha} = 1 - \frac{1}{\alpha} \left(1 - \frac{\pi}{2\sqrt{3}} \right), \qquad (\alpha \neq 0).$$
(1)

If $\alpha = 1 - \frac{\pi}{2\sqrt{3}}$ then $g'_{\alpha}(\pi/6) = 0$, so that the convergence is quadratic. If $\alpha > 1 - \frac{\pi}{2\sqrt{3}}$ then $0 < g'_{\alpha}(\pi/6) < 1$, so that the convergence is linear. In this case the error decreases (almost) as a geometric series with ratio $q = g'_{\alpha}(\pi/6)$, and since the right-hand hide of (1) increases with α in this range, therefore the convergence becomes slower as α increases. If $\frac{1}{2} - \frac{\pi}{4\sqrt{3}} < \alpha < 1 - \frac{\pi}{2\sqrt{3}}$ then $-1 < g'_{\alpha}(\pi/6) < 0$, and the convergence is again linear. If $\alpha < \frac{1}{2} - \frac{\pi}{4\sqrt{3}}$ then $g'_{\alpha}(\pi/6) < -1$. Since $|g'_{\alpha}(\pi/6)| > 1$, and the fixed point ξ is not attracting. Thus, (i) is true. (b) We have

$$f'(x) = -\pi e^x \sin(\pi e^x)$$

and

$$f''(x) = -\pi e^x \sin(\pi e^x) - (\pi e^x)^2 \cos(\pi e^x),$$

and in particular $f'(\xi) = 0$ and $f''(\xi) = \pi^2$. Thus, $\xi = 0$ is root of f of order 2. The iteration function corresponding to Newton's method is:

$$g(x) = x - \frac{f(x)}{f'(x)} = x + \frac{\cos(\pi e^x) + 1}{\pi e^x \sin(\pi e^x)}$$

Now

$$g'(x) = \frac{(\pi e^x \cos(\pi e^x) + \sin(\pi e^x))e^{-x}}{(\cos(\pi e^x) - 1)\pi},$$
(2)

and a routine calculation yields $g'(x) = \lim_{x \to 0} g'(x) = \frac{1}{2}$. Hence the convergence is linear, with speed almost the same as that of the bisection method.

Thus, (ii) is true.

3. (a) Let $x_0 = 0 < x_1 < \ldots < x_n = \pi/12$ be the division points. The errors $E_{1,i}$, $E_{2,i}$, and $E_{3,i}$ in each sub-interval $[x_{i-1}, x_i]$, $1 \le i \le n$, when using the rectangle rule, the midpoint rule and Simpson's rule, respectively, are:

$$E_{1,i} = f'(\eta_{1,i}) \frac{(x_i - x_{i-1})^2}{2}, \qquad \eta_{1,i} \in (x_{i-1}, x_i),$$

$$E_{2,i} = f''(\eta_{2,i}) \frac{(x_i - x_{i-1})^3}{24}, \qquad \eta_{2,i} \in (x_{i-1}, x_i),$$

$$E_{3,i} = -f^{(4)}(\eta_{3,i}) \frac{(x_i - x_{i-1})^5}{90 \cdot 2^5}, \qquad \eta_{3,i} \in (x_{i-1}, x_i).$$

The corresponding total errors are:

$$E_1 = \sum_{i=1}^n E_{1,i}, \qquad E_2 = \sum_{i=1}^n E_{2,i}, \qquad E_3 = \sum_{i=1}^n E_{3,i}.$$

One verifies by induction that $f^{(k)}(x)$ is a polynomial of degree k + 1 with non-negative coefficients in $\operatorname{tg} 4x$ for each $k \ge 0$. For example,

$$f'(x) = \frac{4}{\cos^2 4x} = 2^2(\operatorname{tg}^2 4x + 1),$$

$$f''(x) = 2^5(\operatorname{tg}^3 4x + \operatorname{tg} 4x),$$

and

$$f^{(4)}(x) = 2^{11} \left(3 \operatorname{tg}^{5} 4x + 5 \operatorname{tg}^{3} 4x + 2 \operatorname{tg} 4x \right).$$

In particular, since $\operatorname{tg} 4x$ is positive throughout the interval, so is $f^{(k)}(x)$ for every k. Hence, $E_1 > 0, E_2 > 0, E_3 < 0$.

Thus, (iii) is true.

(b) Since $\ln(x(x+1)) = \ln x + \ln(x+1)$, we have:

$$\int_0^1 \ln(x(x+1))dx = \int_0^1 \ln x dx + \int_0^1 \ln(x+1)dx.$$
 (3)

Moreover, when approximating the left-hand side of (3) by the rectangle rule (or any other rule for that matter) we obtain the sum of the approximations obtained for the two integrals on the right-hand side. Note that the first integral on the right-hand side of (3) was studied in class. When using the rectangle rule with the right endpoint of each sub-interval instead of its left endpoint, it is approximated as follows:

$$\int_{0}^{1} \ln x dx \approx \frac{1}{n} \sum_{i=1}^{n} \ln \frac{i}{n} = \frac{1}{n} \ln n! - \ln n.$$
 (4)

Similarly, for the second integral on the right-hand side of (3) we have:

$$\int_{0}^{1} \ln(x+1)dx \approx \frac{1}{n} \sum_{i=1}^{n} \ln\left(\frac{i}{n}+1\right) \\ = \frac{1}{n} \ln(2n)! - \frac{1}{n} \ln n! - \ln n.$$
(5)

Substituting (4) and (5) in the right-hand side of (3), we obtain:

$$\int_0^1 \ln(x(x+1))dx \approx \frac{1}{n}\ln(2n)! - 2\ln n.$$
 (6)

Now, by Stirling's formula $(2n)! \approx \sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}$, and therefore:

$$\int_0^1 \ln(x(x+1))dx \approx \frac{1}{2n} \ln 4\pi n + 2\ln 2 - 2.$$
 (7)

Since $\int \ln x dx = x \ln x - x + c$, we have

$$\int_0^1 \ln(x(x+1))dx = [x\ln x - x + (x+1)\ln(x+1) - (x+1)]_0^1$$

= $2\ln 2 - 2.$ (8)

By (7) and (8):

$$E \approx -\frac{1}{2n} \ln 4\pi n.$$

Thus, (iii) is true.

(c) Let $f(x) = \sqrt{\cos x}$. For $1 \le i \le n$, the error in the sub-interval $\left[\frac{\pi(i-1)}{3n}, \frac{\pi i}{3n}\right]$ is:

$$E_i = \frac{f''(\eta_i)}{24} \cdot \left(\frac{\pi}{3n}\right)^3, \qquad \left(\eta_i \in \left(\frac{\pi(i-1)}{3n}, \frac{\pi i}{3n}\right)\right).$$

Hence the total error is:

$$E = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} \frac{f''(\eta_i)}{24} \left(\frac{\pi}{3n}\right)^3 = \frac{1}{24} \left(\frac{\pi}{3n}\right)^2 \sum_{i=1}^{n} f''(\eta_i) \cdot \frac{\pi}{3n}.$$

The sum on the right-hand side is a Riemann sum of the function f'' on the interval $[0, \frac{\pi}{3}]$. Thus,

$$E \approx \frac{1}{24} \left(\frac{\pi}{3n}\right)^2 \int_0^{\pi/3} f''(x) dx = \frac{1}{24} \left(\frac{\pi}{3n}\right)^2 \left(f'\left(\frac{\pi}{3}\right) - f'(0)\right).$$
(9)

Now $f'(x) = -\frac{\sin x}{2\sqrt{\cos x}}$, so that (9) yields

$$E \approx \frac{1}{24} \left(\frac{\pi}{3n}\right)^2 \left(-\frac{\sin \pi/3}{2\sqrt{\cos \pi/3}} + \frac{\sin 0}{2\sqrt{\cos 0}}\right) = -\frac{\pi^2 \sqrt{6}}{864n^2}.$$

Thus, (i) is true.

4. (a) For the formula in question to be exact for all polynomials up to degree 2, it needs to hold for the polynomials 1, x, x^2 . Namely, the following equalities need to hold:

$$\begin{cases} w_1 \cdot 1 + w_2 \cdot 1 &= 1\\ w_1 \cdot \frac{1}{3} + w_2 \cdot x_2 &= \frac{1}{2}\\ w_1 \cdot \frac{1}{9} + w_2 \cdot x_2^2 &= \frac{1}{3} \end{cases}$$

A routine calculation shows that the choice $x_2 = 1$, $w_1 = 3/4$ and $w_2 = 1/4$ indeed yields a solution of the system. Thus, (iv) is true.

(b) P_1 is not orthogonal to all constant polynomials. In fact

$$\langle P_1, 1 \rangle = \int_0^1 P_1(x) dx$$

= $w_1 P_1(1/3) + w_2 P_1(x_2)$
= $w_1 P_1(1/3) = 3/4 \cdot (1/3 - 1) \neq 0$

The polynomial P_2 is orthogonal to all constant polynomials. Indeed, for any constant $c \in \mathbf{R}$

$$\langle P_2, c \rangle = \int_0^1 c P_2(x) dx = w_1 c P_2(1/3) + w_2 c P_1(x_2) = 0.$$

However, P_2 is not orthogonal to all polynomials of degree not exceeding 1. For example,

$$\langle P_2, x - 1/3 \rangle = \int_0^1 (x - 1/3)^2 (x - 1) dx < 0,$$

since the only zeros of the integrand $(x-1/3)^2(x-1)$ are x = 1/3 or x = 1, and for all other values of $x \in [0, 1]$ it is negative. Thus, (ii) is true.