
Midterm

Mark the correct answer in each part of the following questions.

1. We are working with a system implementing the IEEE standard with
single precision and rounding to the nearest. Denote by ⊕ the binary
operation of addition, as performed on floating point numbers in our
system, and denote analogous operations similarly.

(a) Let a1, a2 be positive normal numbers and s1, s2 positive sub-
normal numbers.

(i) We necessarily have a1 ⊕ a2 > a1 ⊕ s2 > s1 ⊕ s2 > s1.

(ii) We necessarily have a1 ⊕ a2 > a1 ⊕ s2 and s1 ⊕ s2 > s1, but
may have a1 ⊕ s2 = s1 ⊕ s2.

(iii) We may have a1 ⊕ a2 = a1 ⊕ s2 and a1 ⊕ s2 = s1 ⊕ s2, but
we necessarily have s1 ⊕ s2 > s1.

(iv) We may have a1 ⊕ a2 = a1 ⊕ s2, but we necessarily have
a1 ⊕ s2 > s1 ⊕ s2 > s1.

(v) None of the above.

(b) The product of all positive sub-normal numbers (i.e., the actual
product, not the product calculated by the system) is:

(i) (223)!/2149·(223−1).

(ii) (223 − 1)!/2149·23.

(iii) (223)!/2149·23.

(iv) (223 − 1)!/2149·(223−1).

(v) None of the above.

(c) Consider the equations (2 � 3) � x = x and (3 � 2) � x = x in
positive floating point numbers.

(i) Both equations have no solutions.
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(ii) Both equations have a unique solution.

(iii) The first equation has no solutions while the second has
exactly one.

(iv) The first equation has exactly one solution while the second
has none.

(v) None of the above.

(d) Consider the Matlab code section
b=a; for i=1:k a=2*a; b=0.500001*b; end; a/b

where a is some positive floating point number and k some positive
integer, both defined earlier. We run the code on a system with
the specifications listed at the beginning of the question.

(i) For k = 2 there exists a value of a for which the output of the
above section is 12. For k = 130 the output must be ∞.

(ii) For k = 2 the output of the above section is either 16 or ∞.
For k = 130 the output must be ∞.

(iii) For k = 2 there exists a value of a for which the output of
the above section is 12. For k = 130 the output may be ∞,
but may also be a finite floating point number.

(iv) For k = 2 the output of the above section is either 16 or ∞.
For k = 130 the output may be ∞, but may also be a finite
floating point number.

(v) None of the above.

2. In this question we deal with fixed points of certain functions g. We
start at some point x0 and continue according to the iteration xn+1 =
g(xn) for n ≥ 0.

(a) Let:

g(x) =


x2/3, x ≥ 0,

−|x|2/3, x < 0.

Notice that g has exactly 3 fixed points, namely ξ1 = −1, ξ2 =
0, ξ3 = 1.

2



(i) For every choice of x0 ∈ R, the sequence (xn)∞n=1 converges to
one of the fixed points. Moreover, each of the fixed points ξi
has a neighborhood Ui, such that, if x0 ∈ Ui, then xn −→

n→∞
ξi.

(ii) For every choice of x0 ∈ R, the sequence (xn)∞n=1 converges
to one of the fixed points. However, some of the fixed points
ξi have no neighborhood Ui as in (i).

(iii) There exist choices of x0 for which the sequence (xn)∞n=1

diverges. However, each of the fixed points ξi has a neighbor-
hood Ui as in (i).

(iv) There exist choices of x0 for which the sequence (xn)∞n=1

diverges. Moreover, some of the fixed points ξi have no neigh-
borhood Ui as in (i).

(v) None of the above.

(b) Consider the function g(x) = tg x. Notice that it has exactly one
fixed point ξk in each interval of the form (kπ−π/2, kπ+π/2) for
integer k.

(i) For every k, the point ξk has a neighborhood Uk such that, if
x0 ∈ Uk, then xn −→

n→∞
ξk.

(ii) There exist finitely many (but not 0) indices k for which ξk
has no neighborhood Uk as in (i), but for all other k’s there
exists such a neighborhood.

(iii) There exist infinitely many indices k for which ξk has no
neighborhood Uk as in (i), and infinitely many for which ξk
does have such a neighborhood.

(iv) There exists exactly one index k for which ξk has a neigh-
borhood Uk as in (i).

(v) None of the above.

(c) Suppose the point 4 is a fixed point of g, and:

g′(4) = g′′(4) = 0, g′′′(4) = −3.

We have started the iteration at some point x0, and after 5 steps
we are at x5 = 4 − 10−6. It is reasonable to guess that x6 is
approximately

(i) 4− 5 · 10−19.
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(ii) 4− 3 · 10−12.

(iii) 4 + 3 · 10−12.

(iv) 4 + 5 · 10−19.

(v) None of the above.

3. In this question we deal with zeros of certain functions f .

(a) The equation x3−x = 0 has the three zeros ξ1 = −1, ξ2 = 0, ξ3 = 1.
We employ Newton’s method to solve the equation, starting from
a certain point x0.

(i) Each of the zeros ξi, 1 ≤ i ≤ 3, has a neighborhood Ui such
that, if x0 ∈ Ui, then the resulting sequence converges at least
quadratically to ξi. Moreover, U3 ⊇ (1,∞).

(ii) The zeros ξ1 and ξ3 have neighborhoods U1 and U3, respec-
tively, such that, if x0 ∈ Ui, then the resulting sequence con-
verges at least quadratically to ξi, but ξ2 has no such neigh-
borhood. Moreover, U3 ⊇ (1,∞).

(iii) Each of the zeros ξi, 1 ≤ i ≤ 3, has a neighborhood Ui such
that, if x0 ∈ Ui, then the resulting sequence converges at least
quadratically to ξi. However, U3 6⊇ (1,∞).

(iv) The zeros ξ1 and ξ3 have neighborhoods U1 and U3, respec-
tively, such that, if x0 ∈ Ui, then the resulting sequence con-
verges at least quadratically to ξi, but ξ2 has no such neigh-
borhood. Also, U3 6⊇ (1,∞).

(v) None of the above.

(b) Consider the equation

ex = x2 + 2x.

Notice that the equation is equivalent to each of the equations
gi(x) = x, i = 1, 2, where the functions g1, g2 are defined by:

g1(x) =
ex − x2

2
, g2(x) = ln

(
x2 + 2x

)
.

Notice also that the difference ex − (x2 + 2x) assumes values of
opposite signs at the points 2.2 and 2.3, so that our equation has
a solution ξ ∈ [2.2, 2.3].
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(i) Trying to solve the equation by iterating either g1 or g2, start-
ing from a point sufficiently close to ξ, we obtain a sequence
getting away from it.

(ii) Trying to solve the equation by iterating g1, starting from
a point sufficiently close to ξ, we obtain a sequence getting
away from it. Trying to solve the equation by iterating g2,
starting from a point sufficiently close to ξ, we obtain a se-
quence converging linearly to ξ, which is much slower than
does Newton’s method in this case.

(iii) Trying to solve the equation by iterating either g1 or g2,
starting from a point sufficiently close to ξ, we obtain a se-
quence converging linearly to ξ, which is much slower than
does Newton’s method in this case.

(iv) Trying to solve the equation by iterating g1, starting from
a point sufficiently close to ξ, we obtain a sequence converg-
ing linearly to ξ. Trying to solve the equation by iterating
g2, starting from a point sufficiently close to ξ, we obtain a
sequence converging quadratically to ξ, which is roughly the
speed provided by Newton’s method in this case.

(v) None of the above.

(c) Consider the function f defined by:

f(x) =

{
−| sin x|5/2, −π

4
≤ x < 0,

(sinx)5/2, 0 ≤ x ≤ π
4
.

We solve the equation f(x) = 0 by Newton’s method.

(i) The convergence is linear, but slightly slower than that of the
bisection method.

(ii) The convergence is linear, with speed almost the same as that
of the bisection method.

(iii) The convergence is linear, but slightly faster than that of
the bisection method.

(iv) The convergence is quadratic.

(v) None of the above.
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Solutions

1. (a) Obviously, the operation ⊕ is non-decreasing as a function of each
of the variables. The question is to what extent it is strictly in-
creasing. We check each inequality separately.

• a1 ⊕ a2 > a1 ⊕ s2:
Take a1 = 2100, a2 = 1, and s2 as any sub-normal number.
Then:

a1 ⊕ a2 = a1 = a1 ⊕ s2.

• a1 ⊕ s2 > s1 ⊕ s2:
We claim that the inequality indeed holds. Since a1 ⊕ s2 ≥
2−126 ⊕ s2 and s1 ⊕ s2 ≤ (1− 2−23) · 2−126 ⊕ s2, it suffices to
show that 2−126⊕s2 > (1− 2−23) ·2−126⊕s2. Now notice that
all integer multiples of 2−149, from 1 · 2−149 up to 224 · 2−149,
are floating point numbers. Therefore 2−126 ⊕ s2 = 2−126 + s2

and (1− 2−23) ·2−126⊕s2 = (1− 2−23) ·2−126 +s2. This proves
the required inequality.

• s1 ⊕ s2 > s1:
As with the preceding part, we necessarily have s1 ⊕ s2 =
s1 + s2 > s1.

Thus, (iv) is true.

(b) The set of positive sub-normal numbers is the set of all integer
multiples of 2−149, from 1 · 2−149 up to (223 − 1) · 2−149. Conse-
quently, the required product is

223−1∏
i=1

(
i · 2−149

)
=

(223 − 1)!

2149(223−1)
.

Thus, (iv) is true.

(c) Let x = m·2E, where either m = 1.b1b2 . . . b23 and−126 ≤ E ≤ 127
or m = 0.b1b2 . . . b23 and E = −126. Unless m = 0.00 . . . 01 and
E = −126, we have (3/2)x ≥ (m+ 2−23) · 2E, and since the right-
hand side is a floating point number (or ∞) in our system we get
(3�2)�x > x. In the exceptional case where m = 0.00 . . . 01 and
E = −126, we verify that (due to the rounding rules) (3�2)�x =
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0.00 . . . 010·2−126 = 2−148 > 2−149 = x. Hence the second equation
has no solution.

The situation regarding the first equation is similar, but here we
need to check directly the two cases (i) m = 0.00 . . . 01 and E =
−126, and (ii) m = 0.00 . . . 010. In the first of these, the equation
is satisfied, while in the second it is not. Hence the equation has
a unique solution.

Thus, (iv) is true.

(d) For k = 2, if we start with a = 3 · 2−149, then at the end of the
execution of the program we have a = 12 · 2−149 and b = 2−149, so
that the output is 12.

For k = 130, in principle, since a is doubled at each iteration and
b about halved, the final value of a/b is about 2260, which is ∞
in our system. However, this is not completely correct, as b may
become 2−149 at some point during the execution of the loop and
stay so for the rest of the loop. Yet, even in this case, a will either
double at each iteration, or become ∞ at some point and stay so
for the rest of the loop. Hence, in any case, either a will be ∞ or
it will be at least 2130 times its initial value, so that the output
will be ∞.

Thus, (i) is true.

2. (a) Since g is an odd function, it suffices to understand it on [0,∞).
We have g′(x) = 2

3 3√x > 0 for x > 0, and g′ is undefined at 0.

Obviously 0 ≤ g′(x) ≤ 2
3

for x ≥ 1. Therefore, for x0 ∈ [1,∞) the
sequence (xn)∞n=1 decreases to ξ3. For x0 ∈ (0, 1) the sequence is
easily seen by induction to be increasing and bounded above by 1.
Hence it must converge to a fixed point of g, which must be ξ3.

The situation on (−∞, 0) is analogous. In particular, ξ2 does
not admit a neighborhood U2 as required. However, for every
x0 ∈ (0,∞) the sequence (xn)∞n=1 converges to ξ3 = 1 and for
every x0 ∈ (−∞, 0) it converges to ξ1 = −1.

Thus, (ii) is true.

(b) Since |g′(x)| = 1/ cos2 x ≥ 1 at any point where g is defined, if
x ∈ (kπ − π/2, kπ + π/2) then

| tg x− ξk| =
1

cos2 η
· |x− ξk| ≥ |x− ξk|, (η ∈ (ξk, x)).
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Hence for no k can ξk have a neighborhood Uk as required.

(In fact, a point x0 may lead to a fixed point under the iteration
process only if some xn happens to coincide with some ξk. Since
the function g is countable-to-one, there may be only countably
many points x0 possessing this property.)

Thus, (v) is true.

(c) Consider the Taylor expansion of g(x) around the fixed point ξ = 4,

g(x) = ξ +
g′(ξ)

1!
(x− ξ) +

g′′(ξ)

2!
(x− ξ)2 +

g′′′(η)

3!
(x− ξ)3,

where η = η(x) ∈ (ξ, x). Since g′(ξ) = g′′(ξ) = 0, and x5 is close
to ξ:

x6 = g(x5) ≈ 4 +
g′′′(η)

3!
(x5 − 4)3.

Since g′′′(ξ) = −3, it is reasonable to guess that

x6 ≈ 4− 3

3!
· (−10−6)3 = 4 + 5 · 10−19.

Thus, (iv) is true.

3. (a) We have f ′(x) = 3x2 − 1. Hence f ′ vanishes only at x1 = − 1√
3

and x2 = 1√
3
. Since neither of these points is a zero of f , each of

those zeros ξi has a neighborhood Ui such that, if x0 ∈ Ui, then
the resulting sequence converges at least quadratically to ξi.

Since f ′′(x) = 6x > 0 on (0,∞), the function is both increasing
and convex throughout (1/

√
3,∞). Hence, for every ε > 0, if b is

sufficiently large, then f satisfies on the interval [1/
√

3 + ε, b] the
sufficient condition ensuring that Newton’s method converges to
the zero of f when starting at any point in the interval. It follows
that U3 ⊇ (1,∞).

Thus, (i) is true.

(b) Let f(x) = ex − x2 − 2x for x ∈ [2.2, 2.3]. We have

f ′(x) = ex − 2x− 2, x ∈ [2.2, 2.3],
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and in particular:

f ′(ξ) = eξ − 2ξ − 2 = ξ2 + 2ξ − 2ξ − 2 = ξ2 − 2 > 0.

Hence Newton’s method converges quadratically to ξ when started
sufficiently close to it.

However, the situation is different for g1 and g2. We have g′1(x) =
ex−2x

2
, so that

g′1(ξ) =
ξ2 + 2ξ − 2ξ

2
=
ξ2

2
> 1.

Hence, starting from a point sufficiently close to ξ, we move farther
away from it.

For g2 we have g′2(x) = 2x+2
x2+2x

, so that

g′2(ξ) =
2

ξ
· ξ + 1

ξ + 2
∈ (0, 1).

Therefore, solving the equation by iterating g2, starting from a
point sufficiently close to ξ, we obtain a sequence converging lin-
early to ξ.

Thus, (ii) is true.

(c) Obviously, f has a unique root ξ = 0. The iteration function
corresponding to Newton’s method is given by:

g(x) = x− f(x)

f ′(x)
= x− 2

5
tg x, x ∈ [−π

4
,
π

4
].

Therefore

g′(x) = 1− 2

5
· 1

cos2 x
, x ∈ [−π

4
,
π

4
],

which yields g′(ξ) = 1 − 2
5
· 1

cos2 0
= 3

5
. Hence, starting from a

point near 0 (actually, in our case every point in [−π/4, π/4] will
do), we have linear convergence with |en+1| ≈ 3

5
|en| as n → ∞.

This convergence is a bit slower than that of the bisection method,
where |en+1| ≈ 1

2
|en|.

Thus, (i) is true.
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