
Review Questions

Mark the correct answer in each part of the following questions.

1. We are working with a system implementing the IEEE standard with
single precision and rounding to the nearest. Denote by � and �
the binary operations of multiplication and division, respectively, as
peformed on floating point numbers in our system.

(a) Let a1, a2 be positive normal numbers and s1, s2 positive sub-
normal numbers.

(i) Each of the three relations a1 � a2 > a1 · a2, a1 � a2 = a1 · a2

and a1 � a2 < a1 · a2 is possible. Similarly, each of the three
relations s1� s2 > s1 · s2, s1� s2 = s1 · s2 and s1� s2 < s1 · s2

is possible.

(ii) Each of the above three relations invloving the ai’s is possible,
but only two of those invloving the si’s are possible.

(iii) Each of the above three relations invloving the ai’s is possi-
ble, but only one of those invloving the si’s is possible.

(iv) Only two of the above three relations invloving the ai’s are
possible, and only two of those invloving the si’s are possible.

(v) None of the above.

(b) The sum of all positive normal numbers (i.e., the actual sum, not
the sum calculated by the system) is:

(i) 3 · 2150 − 2127 − 3 · 2−104 + 2−127.

(ii) 9 · 2150 − 2127 − 9 · 2−104 + 2−127.

(iii) 3 · 2150 + 2127 + 3 · 2−104 + 2−127.

(iv) 9 · 2150 + 2127 + 9 · 2−104 + 2−127.

(v) None of the above.
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(c) Consider the following three possible properties of a floating point
number a in the interval [1, 2):

A. a� 3 > a/3.

B. a� 3 = a/3.

C. a� 3 < a/3.

(i) There exist numbers satisfying Property A, there exist num-
bers satisfying Property B, and there exist numbers satisfying
Property C.

(ii) All numbers satisfy Property B.

(iii) There exist numbers satisfying Property A, there exist num-
bers satisfying Property B, but there exist no numbers satis-
fying Property C.

(iv) There exist no numbers satisfying Property A, but there
exist numbers satisfying Property B and there exist numbers
satisfying Property C.

(v) None of the above.

(d) Consider the Matlab code section

a=1;

while(a+eps>a)

a=a+eps;

end;

a

We run the code on a system with the sepcifications listed at the
beginning of the question. The output of this code is:

(i) 2.

(ii) The largest floating point number in the system.

(iii) ∞.

(iv) NaN.

(v) None of the above.

2. In this question we deal with fixed points of certain functions g. We
start at some point x0 and continue according to the iteration xn+1 =
g(xn) for n ≥ 0.
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(a) The point 0 is a fixed point of both functions g1 and g2, defined
by:

g1(x) =
1

4
sinx+

3

4
tg x, g2(x) =

3

4
sinx+

1

4
tg x.

(Hint: You may use the expansions

sinx = x − x3

6
+ O (x5) ,

tg x = x + x3

3
+ O (x5)

of sin x and tg x near 0.)

(i) If x0 is sufficiently close to 0 then the sequence (xn)∞n=1 corre-
sponding to g2 converges to 0, but the analogous sequence for
g1 does not. However, the convergence for g2 is slower than
linear.

(ii) If x0 is sufficiently close to 0 then the obtained sequences
converge to 0 for both g1 and g2. However, the convergence
for g1 is slower than linear, while for g2 it is linear.

(iii) If x0 is sufficiently close to 0 then the obtained sequences
converge to 0 for both g1 and g2. The convergence is linear
for g1 and quadratic for g2.

(iv) If x0 is sufficiently close to 0 then the obtained sequences
converge to 0 quadratically for both g1 and g2.

(v) None of the above.

(b) Let g(x) = x2 cosx. Notice that ξ0 = 0 is a fixed point of g. In
addition, the function has a fixed point ξk ∈ (2kπ, 2kπ + π/2) for
every positive integer k.

(i) For each k ≥ 0, there exists no neighborhood Uk of ξk such
that, if x0 ∈ Uk, then xn −→

n→∞
ξk.

(ii) There exists a neighborhood U0 of ξ0 such that, if x0 ∈ U0,
then xn −→

n→∞
ξ0, where the convergence is linear. However, if

k is sufficiently large, then no such neighborhood Uk exists
for ξk.

(iii) There exists a neighborhood U0 of ξ0 such that, if x0 ∈ U0,
then xn −→

n→∞
ξ0, where the convergence is quadratic. However,
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if k is sufficiently large, then no such neighborhood Uk exists
for ξk.

(iv) For each k ≥ 0, there exists a neighborhood Uk of ξk such
that, if x0 ∈ Uk, then xn −→

n→∞
ξk. However, whereas the con-

vergence is quadratic for k = 0, it is only linear for k ≥ 1.

(v) None of the above.

(c) The function g : [2, 3]−→[2, 3] is not necessarily continuous, yet is
known to have a fixed point ξ. Consider the fixed point ξ2 of the
function g1 : [4, 9]−→[4, 9], defined by:

g1(x) = g
(√

x
)2
, x ∈ [4, 9].

Consider the following possible properties of the functions:

A. There exists a neighborhood U of ξ such that, if x0 ∈ U , then
the sequence of iterates (xn) under g satisfies xn −→

n→∞
ξ, where

the convergence is at least linear.

B. There exists a neighborhood U of ξ2 such that, if x0 ∈ U ,
then the sequence of iterates (xn) under g1 satisfies xn −→

n→∞
ξ2,

where the convergence is at least linear.

(i) Property A is equivalent to Property B.

(ii) Property A implies Property B, but not vice versa.

(iii) Property B implies Property A, but not vice versa.

(iv) Neither property implies the other.

3. In this question we deal with zeros of certain functions f .

(a) Consider the functions f1 and f2, defined by:

f1(x) = ln(x2 − 3), f2(x) = x2 − 4.

We are interested in the performance of Newton’s method when
trying to find the zeros of the two functions.
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(i) Newton’s method works equally well for the two functions.
Namely, if when starting the iteration for f1 from some point
x0 we converge to some zero of f1 at some speed, then the
same holds for f2, and vice versa. Moreover, when starting
from a point sufficiently close to one of the zeros, we converge
quadratically to that zero.

(ii) Newton’s method works well for both functions in the sense
that each zero has a neighborhood such that, when starting
from a point in this neighborhood, we converge to 0 for each
of the functions. However, the speed of convergence when
starting at such initial points is linear for one of the functions
and quadratic for the other.

(iii) Newton’s method converges for f1 when starting from a point
sufficiently close to one of the zeros. However, there are many
starting points for which the method does not lead to a con-
verging sequence. On the other hand, for f2 there exists only
one starting point on the real line for which we do not obtain
a sequence converging to one of the zeros.

(iv) One of the two functions has the property that there exists
points arbitrarily close to one of the zeros such that, when
starting the iteration for this functions at one of these points,
we converge to another zero of that function.

(v) None of the above.

(b) Let f : (0,∞)−→R be defined by

f(x) = xαex − e, x > 0,

where α is an arbitrary fixed real positive number.

(i) For every α and every initial point x0 > 0 (where x0 is not a
zero of f), Newton’s method converges at most linearly fast
to a zero of f .

(ii) For every sufficiently large α, Newton’s method converges
quadratically when started in a sufficiently small neighbor-
hood of the zero of f . However, for every α there exist initial
values x0 > 0 for which the method fails to converge to the
zero of f , and there exist values of α for which there exists no
neighborhood as above.

5



(iii) For every α, Newton’s method converges quadratically when
started in a sufficiently small neighborhood of the zero of f .
However, for every α there exist initial values x0 > 0 for which
the method fails to converge to the zero of f .

(iv) For every α and x0 > 0, Newton’s method converges quadrat-
ically.

(v) None of the above.

(c) Consider the equation

ex arcsinx− 2x = 0,

which is equivalent to the fixed-point equation g(x) = x, where

g(x) = ex arcsinx− x, x ∈ [−1, 1].

The equation has two zeros ξ1 = 0 and ξ2 ∈ [0.6, 0.7]. We try to
solve the equation by iterating g.

(i) The point ξ1 has a neighborhood U such that, starting the
iterations at a point x0 ∈ U , we converge to ξ1. The conver-
gence in this case is roughly at the same speed as that of the
bisection method. The point ξ2 has no such neighborhood.

(ii) The point ξ1 has a neighborhood U such that, starting the
iterations at a point x0 ∈ U , we converge to ξ1 quadratically.
The point ξ2 has no neighborhood that guarantees conver-
gence.

(iii) The point ξ1 has a neighborhood U such that, starting the
iterations at a point x0 ∈ U , we converge to ξ1 quadratically.
The point ξ2 has a neighborhood for which the same holds,
but only linearly fast.

(iv) Both points ξi, i = 1, 2, have neighborhoods Ui such that,
starting the iterations at a point x0 ∈ Ui, we converge to ξi
quadratically.

(v) None of the above.
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Solutions

1. (a) Since 1 · 1 = 1 is a floating point number, we have 1� 1 = 1 · 1.

We have 3 · (1 + 2−23) = 2 + 1 + 2−22 + 2−23. Normalizing, we
obtain the representation (1 + 2−1 + 2−23 + 2−24) · 21, which needs
to be up rounded. Thus 3� (1 + 2−23) > 3 · (1 + 2−23).

Now (1 + 2−23) · (1 + 2−23) = 1 + 2−22 + 2−46, which needs to
be down rounded to 1 + 2−22. Thus (1 + 2−23) � (1 + 2−23) <
(1 + 2−23) · (1 + 2−23).

Altogether, all 3 orderings are possible between a1�a2 and a1 ·a2.

Clearly, s1 · s2 < 2−126 · 2−126 = 2−252, which needs to be down
rounded to 0. Hence we necessarily have s1 � s2 < s1 · s2.

Thus, (iii) is true.

(b) Denote by M the set of all floating point numbers in the interval
[1, 2) and by T the set of all powers of 2 from 2−126 up to 2127.
The required sum S is∑

m∈M,t∈T

mt =
∑
m∈M

m ·
∑
t∈T

t. (1)

The first factor on the right-hand side is the sum of an arithmetic
progression, whose first term is 1, whose last term is 2−2−23, and
whose length is 223. Hence:∑

m∈M

m = (1 + 2− 2−23) · 223/2 = 3 · 222 − 2−1.

The second factor on the right-hand side of (1) is a sum of a
geometric progression, so that:∑

t∈T

t = 2128 − 2−126.

It follows that:

S = (3 · 222− 2−1) · (2128− 2−126) = 3 · 2150− 2127− 3 · 2104 + 2−127.

Thus, (i) is true.
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(c) (3/2)/3 = 1/2 is a floating point number, so that the number 3/2
satisfies B.

The infinite binary expansion of the number 1/3 is 0.0101..., which
may be written in the form 1.0101... · 2−2, and is therefore up
rounded to 1.0101...01011 ·2−2 in our system. Thus, the number 1
satisfies A.

Now

(7/4)/3 = 1/2 + 1/12 = (1 + 1/6) · 2−1 =

(
1 +

∞∑
n=1

2−2n−1

)
· 2−1,

which is down rounded to (1 + 2−3 + 2−5 + 2−7 + . . .+ 2−23) · 2−1.
It follows that the number 7/4 satisfies C.

Thus, (i) is true.

(d) The floating point numbers between 1 and 2 are the numbers
1, 1 + ε, 1 + 2ε, . . . , 2. Thus the loop will change a from 1 to 2
within 223 steps. Now (2 + ε)+ = 2 + 2ε, while (2 + ε)− = 2, so
that 2⊕ ε = 2. Hence the loop will stop when a becomes 2.

Thus, (i) is true.

2. (a) We have

g′1(x) =
1

4
cosx+

3

4 cos2 x
, g′2(x) =

3

4
cosx+

1

4 cos2 x
.

Hence:
g′1(0) = g′2(0) = 1.

Thus, for both functions we are in a borderline case; we may have
divergence, but we may also have (slow) convergence. To decide,
we need to consider the functions g1 and g2 more carefully. Near 0
we have

g1(x) = x+
5

24
x3 +O

(
x5
)

and

g2(x) = x− 1

24
x3 +O

(
x5
)
.
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It follows that, if x is sufficiently close to 0, then g2(x) is slightly
closer to 0 than is x, while g1(x) is slightly farther. Consequently,
for g1 we certainly do not have convergence. Since we can find a
neighborhood of 0 not including any fixed point of g2 but 0, this
also means that for g2 the sequence does converge to 0 if we start
sufficiently close to 0. More accurately, from the above we see
that the sequence of errors (en) satisfies en+1 ≈ en − e3n/24.

Thus, (i) is true.

(b) We have
g′(x) = 2x cosx− x2 sinx,

so that g′(0) = 0 and the convergence is quadratic. To obtain a
more precise estimate we calculate

g′′(x) = 2 cosx− 4x sinx− x2 cosx,

so that g′′(0) = 2 and en+1 ≈ −e2n. (Of course, we have ex-
actly xn+1 = x2

n cosxn, which gives en+1 = −e2n cos en, yielding
the above estimate.)

Now take an arbitrary fixed k ≥ 1, and put ξ = ξk. Employing
the equality g(ξ) = ξ, we obtain ξ cos ξ = 1, and therefore:

g′(ξ) = 2ξ cos ξ − ξ2 sin ξ

= 2− ξ2
√

1− 1/ξ2

= 2− ξ
√
ξ2 − 1

< 2− 2π
√

4π2 − 1
< 2− 6 · 6 = −34.

Thus, ξk has no neighborhood guaranteeing convergence.

Thus, (iii) is true.

(c) We claim that A and B are equivalent. In fact, suppose first
that A is satisfied for some neighborhood U of ξ. Consider the
neighborhood U2 = {x2 : x ∈ U} of ξ2. Let x01 ∈ U2 be a starting
point for the iterations for g1. Let (xn1)

∞
n=0 the resulting sequence

of iterates for g1. Starting to iterate for g at the point x0 =
√
x01,

we easily show by induction that we obtain the sequence (xn)∞n=0

with xn =
√
xn1 for each n.
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Since A is satisfied for U , we have |ξ − xn+1| ≤ α|ξ − xn| for all
sufficiently large n, where α < 1. Hence, applying the mean-value
theorem to the mapping t 7→ t2, we obtain:

|ξ − xn+1,1| = |ξ2 − x2
n+1| = |2η| · |ξ − xn+1| ≤ |2η| · α · |ξ − xn|,

where η is an intermediate point between ξ and xn+1. (Of course,
there is no need to invoke the mean-value theorem here, as the
equality clearly holds with η = (ξ + xn+1)/2. However, it shows
that if we had any differentiable function instead of the square
function, it would work just as well. This is what needs to be
done later for proving the inverse direction.) By the same token

|ξ − xn,1| = |2η′| · |ξ − xn|,

where η′ lies between ξ and xn, and therefore:

|ξ − xn| =
1

|2η′|
· |ξ − xn,1|.

It follows that:

|ξ − xn+1,1| ≤
∣∣∣∣ ηη′
∣∣∣∣ · α · |ξ − xn,1|.

Since both η and η′ lie between ξ and xn (or xn+1), the ratio η/η′

becomes arbitrarily close to 1 as n→∞. Taking α′ > α (but still
α′ < 1), we get

|ξ − xn+1,1| ≤ α′|ξ − xn,1|

for all sufficiently large n. Hence A implies B.

The inverse direction works in the same way, with the square
function replaced by the square root function.

Thus, (i) is true.

3. (a) First note that the only zeros of both f1 and f2 are 2 and −2.
Given any even function, Newton’s method works for it the same
way when started from a point x0 > 0 as from−x0. Hence for both
functions we will deal only with convergence to the zero ξ = 2.
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(Note that f1 is undefined at 0 and f ′2(0) = 0, so we will not start
from x0 = 0.)

Since f ′2(ξ) = 4, Newton’s method converges at least quadratically
for f2 when started in a sufficiently small neighborhood of ξ. We
claim that the same holds for any starting point x0 > 0. In fact,
note that f2 is increasing and convex throughout (0,∞). Hence
the method certainly converges when x0 > 2. If 0 < x0 < 2, then
clearly x1 > 2, and again we have convergence.

Newton’s method converges at least quadratically for f1 when
started in a sufficiently small neighborhood of ξ for the same
reason, namely that f ′1(ξ) = 4. However, the situation is dif-
ferent if we start farther farther away from ξ. Note first that f
is increasing and concave throughout its domain of definition in
the positive axis, namely (

√
3,∞). Hence Newton’s method con-

verges if
√

3 < x0 < ξ = 2. Now suppose x0 > ξ. Obviously,
as x0 increases, x1 decreases. Moreover, since f1(x) −→

x→∞
∞ and

f ′1(x) −→
x→∞

0, as x0 increases from ξ to ∞, the point x1 decreases

continuously from ξ to −∞. In particular, there is some inter-
val I ⊆ (ξ,∞) such that if x0 ∈ I then x1 ∈ [−

√
3,
√

3], namely
Newton’s method is stuck after a single iteration.

Thus, (iii) is true.

(b) Since f is increasing throughout its domain of definition and
f(1) = 0, the point ξ = 1 is the only zero of f . We have
f ′(1) = (α + 1)e > 0, so that Newton’s method converges at
least quadratically if we start with x0 sufficiently close to ξ.

We have

f ′′(x) =
(
xα + 2αxα−1 + α(α− 1)xα−2

)
ex.

Since f ′′(1) 6= 0, the convergence is quadratic. A routine calcu-
lation shows that, for α ≥ 1, the function is convex throughout
(0,∞); for α < 1, the function is concave on (0,−α +

√
α) and

convex thereafter. Hence if α ≥ 1 then Newton’s method con-
verges monotonically if x0 > ξ, while if x0 < ξ then x1 > ξ and
thereafter we have monotonic convergence. Now suppose α < 1.
Again, starting to the right of ξ we get monotonic convergence,
while starting anywhere in the interval [−α +

√
α, ξ) we get to a
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point x1 to the right of ξ and have monotonic convergence there-
after. If x0 < −α +

√
α, then we will get consecutively larger

x1, x2, . . ., until some xk will already be to the right of −α +
√
α

(either to the right or to the left of ξ) and we are back to the
former case.

Thus, (iv) is true.

(c) We have

g′(x) = ex arcsinx+
ex√

1− x2
− 1.

At ξ1 the function g′ vanishes, so by iterating g, starting at a suf-
ficiently small neighborhood of ξ1, we have quadratic convergence
to ξ1. Now:

g′(ξ2) = eξ2 arcsin ξ2 + eξ2√
1−ξ22
− 1

= 2ξ2 + eξ2√
1−ξ22
− 1

≥ 2 · 0.6 + e0.6√
1−0.62 − 1

≥ 1.2 + 1√
1−0.62 − 1 = 1.45.

Hence we do not obtain convergence when starting near ξ2.

Thus, (ii) is true.
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