
Numerical Integration – Review Questions

Mark the correct answer in each part of the following questions.

1. (a) The expression (b − a) · f(2a/3 + b/3) has been suggested as an

approximation to
∫ b
a
f(x)dx. The best possible upper bound on

the absolute error in terms of M = supx∈[a,b] |f ′(x)| and the length
of the interval is:

(i) 5
18
M(b− a)2.

(ii) 1
3
M(b− a)2.

(iii) 4
9
M(b− a)2.

(iv) 1
2
M(b− a)2.

(v) None of the above.

(b) We are given some numerical integration method. It is known that,

when using this method to approximate
∫ b
a
f(x)dx for a function

f which is 9 times continuously differentiable on [a, b], the error is

E =
(b− a)10

104
f (9)(η)

for some intermediate point η ∈ (a, b). Suppose we approximate∫ π/2
0

sin 2xdx by dividing the interval of integration into three
equal sub-intervals and employing the given method for the in-
tegral over each of the sub-intervals. Then:

(i) − π10

610·104 ≤ E ≤ π10

610·104 .

(ii) − π10

69·104 ≤ E ≤ π10

69·104 .

(iii) − π10

2·310·104 ≤ E ≤ π10

2·310·104 .

(iv) − π10

2·39·104 ≤ E ≤ π10

2·39·104 .

(v) None of the above.
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Remark: Obviously, each of the first four claims implies all fol-
lowing ones. Mark only the first one (if any) that is correct.

(c) We approximate
∫ 2

1
dx√
x

by dividing the interval into n sub-intervals
of equal length and approximating the integral on each by the
trapezoid rule. Then the total error is approximately

(i) −2−
√

2
8n

.

(ii) −2−
√

2
4n

.

(iii) −2−
√

2
2n

.

(iv) −2−
√

2
n
.

(v) None of the above.

2. (a) Denote by C the vector space of all real continuous functions on
[−1, 1] and by P its subspace of all polynomial functions. Put

G =

{
f ∈ C :

∫ 1

−1

f(x)dx = f(−1/
√

3) + f(1/
√

3)

}
,

and G′ = G ∩ P .

(i) G consists of all polynomials of degree not exceeding 3.

(ii) G′ consists of all polynomials of degree not exceeding 3. G
strictly contains G′, but it is still a finite-dimensional vector
space.

(iii) G′ strictly contains the subspace of all polynomials of de-
gree not exceeding 3, but it is still a finite-dimensional vector
space. G is an infinite-dimensional vector space.

(iv) G′ is an infinite-dimensional vector space and G ) G′.

(v) None of the above.

(b) We are looking for an approximation formula of the form∫ 1

0

f(x)dx ≈ f(x1) + f(x2) + f(x3)

3
,

with appropriate x1, x2, x3 ∈ [0, 1], that has zero error for polyno-
mials of degree up to 3.
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(i) It is impossible to find such a formula. It would be possible
if we required it to be with zero error only for polynomials of
degree up to 2.

(ii) Choosing x1 = 1
6
, x2 = 1

2
, x3 = 5

6
, we obtain a formula as

required.

(iii) Choosing x1 = 1√
3
, x2 = 1

2
, x3 = 1− 1√

3
, we obtain a formula

as required.

(iv) Choosing x1 = 1
2
−
√

2
4
, x2 = 1

2
, x3 = 1

2
+
√

2
4

, we obtain a
formula as required.

(v) None of the above.

Solutions

1. (a) Recall that the error when using the rectangle rule is bounded
by 1

2
M(b − a)2. The approximation suggested in the question

means that we basically use the rectangle rule twice, once for∫ (2a+b)/3

a
f(x)dx and once for

∫ b
(2a+b)/3

f(x)dx. More precisely, for

the first of these integrals we take the value of the function at the
right endpoint of the interval instead of at the left endpoint, but
it clearly makes no difference as far as the absolute error goes.
Hence the absolute error for the first integral is bounded by

1

2
sup

x∈[a,(2a+b)/3]

|f ′(x)|
(
b− a

3

)2

and for the second – by

1

2
sup

x∈[(2a+b)/3,b]

|f ′(x)|
(

2(b− a)

3

)2

.

Thus, the total absolute error is bounded by

1

2
sup

x∈[a,(2a+b)/3]

|f ′(x)|
(
b− a

3

)2

+
1

2
sup

x∈[(2a+b)/3,b]

|f ′(x)|
(

2(b− a)

3

)2

,

which is at most 5
18
M(b − a)2. To see that the bound cannot be

improved, note that the worst case for the rectangle rule is when
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f ′ is identically M (or identically −M) throughout the interval. In
our case, if we take f this way, the errors in approximating the first
integral and in approximating the second will be of opposite signs,
and thus partly cancel each other. Rather, the worst case is when
f ′ is identically M throughout [a, (2a+ b)/3] and identically −M
throughout [(2a + b)/3, b] (or vice versa). Obviously, in this case
f is not differentiable at the point (2a+ b)/3 itself, but smoothing
the function a bit near this point we can attain an error arbitrarily
close to the bound above.

Thus, (i) is true.

(b) Denoting by E1, E2, E3 the errors when approximating the integral
over the left, middle and right thirds of the interval, respectively,
and noting that (sin 2x)(9) = 29 cos 2x, we obtain

E = E1 + E2 + E3

= (π/6)10

104 · 29(cos 2η1 + cos 2η2 + cos 2η3)

for some points η1, η2, η3 in those intervals. Now

cos 2η1 ∈ [1/2, 1], cos 2η2 ∈ [−1/2, 1/2], cos 2η3 ∈ [−1,−1/2].

Consequently,

(π/6)10

104
·29(1/2+(−1/2)+(−1)) ≤ E ≤ (π/6)10

104
·29(1+1/2+(−1/2)),

that is:

− π10

2 · 310 · 104
≤ E ≤ π10

2 · 310 · 104 .

Thus, (iii) is true.

(c) Let f(x) = 1/
√
x. The error in each sub-interval [1+(i−1)/n, 1+

i/n], 1 ≤ i ≤ n, is

− 1

12n3
f ′′(ηi), (ηi ∈ (1 + (i− 1)/n, 1 + i/n).

Hence the total error is

n∑
i=1

− 1

12n3
f ′′(ηi) = − 1

12n2

n∑
i=1

1

n
f ′′(ηi).
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The sum on the right-hand side is a Riemann sum of the function
f ′′ on the interval [1, 2]. Thus,

E ≈ − 1
12n2

∫ 2

1
f ′′(x)dx

= − 1
12n2 · (f ′(2)− f ′(1))

= 2−3/2−1−3/2

24n2 = −4−
√

2
96n2 .

(Note that the mere fact that all claims (i)-(iv) are false follows
from the fact that, when approximating an integral by dividing
the interval into n equal sub-intervals and using the trapezoid rule
for each, the error is bounded by C/n2 for some constant C. The
above calculations serve to exemplify how we estimate the error
rather than just bounding the absolute error from above.)

Thus, (v) is true.

2. (a) Since both expressions
∫ 1

−1
f(x)dx and f(−1/

√
3) + f(1/

√
3) are

linear functionals on the space of all real (continuous) functions
on [−1, 1], the set of functions f for which they assume the same
value, namely G, is indeed a subspace of C. By the theory we
learned, G contains all polynomials of degree not exceeding 3.
Also, it is obvious that G contains all odd functions on [−1, 1].
Hence, G′ contains all polynomials spanned by monomials of odd
degrees (as well as numerous other polynomials) and is therefore
infinite-dimensional. G contains non-polynomial odd functions
(such as sin), and in particular it strictly contains G′.

Thus, (iv) is true.

(b) For the formula in question to be exact for all polynomials up to
degree 3, it needs to hold for the polynomials 1, x, x2, x3. Namely,
the following equalities need to hold:

1+1+1
3

= 1,

x1+x2+x3

3
= 1

2
,

x2
1+x2

2+x2
3

3
= 1

3
,

x3
1+x2

2+x3
3

3
= 1

4
.
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In principle, one would not expect a system of 4 equations in 3
variables to have a solution. However, in our case the first equation
is in fact an identity. A routine calculation shows that the choice
x1 = 1

2
−
√

2
4
, x2 = 1

2
, x3 = 1

2
+
√

2
4

indeed yields a solution of the
system.

Thus, (iv) is true.
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