Final #2

Mark the correct answer in each part of the following questions.

1. Computer Science students need to decide which of two electives —
Approximation Algorithms (AA) and Logic Programming (LP) — they
take. Each student decides to take or not to take each course inde-
pendently of other students and of his own choice concerning the other
course. The probability that a random student takes AA is 0.3, while
the probability that he takes LP is 0.4. (Thus, there are four possibili-
ties for each student: a) choose none of the two courses, b) choose only
AA, ¢) choose only LP, and d) choose both courses.)

The students of the department are labeled by numbers from 1 on.
For each k > 1, denote by Ry the number of students, out of first k
students, taking AA, and by Sy the number of those taking only AA.
(For example, if students 3,5, 8 take none of the two courses, students
1,2,6 — only AA, students 7,9 — only LP, and students 4,10 — both,
then R5 = 3, 85 = 2, R10 = 5, SlO = 3)

(a) The random variables R; and S; are:
(i) independent.
(ii) dependent, but uncorrelated.
(iii) correlated with |p(Ry, S1)| < 1.

(iv) linearly dependent, but not equal.



(v) equal.

(b) p(Ra0, S30) ~
(i) 0.

(i1) 0.24.
(iii) 0.33.
(iv) 0.58.
(v) None of the above.

(¢) The value of k, for which the probability P(Sy = k) is maximal, is:

(v) None of the above.
(d) P(Rs; < 2|55 <2) ~

(i) 0.5.

(ii) 0.679.

(iif) 0.7.

(iv) 0.932.



(v) None of the above.

(e) A direct application of Markov’s inequality shows that the inequal-
ity P(S20 > a) < 0.05 holds for a >

(iv) 90.

(v) None of the above.

Remark: We mean here the best bound that can be obtained by
Markov’s inequality. For example, if Markov’s inequality implies that
inequality P(Sy > a) < 0.05 is true for @ > 63 , then it is evidently
true for a > 72, a > 81 and a > 90, but only (i) should be marked as
the correct answer.

2. A gambler participates in a 2-stage game. At the first stage, he tosses a
die till the result 4 is obtained for the first time. Let X be the number
of his tosses at this stage. If X = k, then at the second stage the
gambler tosses a coin k times. Let Y be the number of heads obtained
during these k coin tosses.

(iii) 4.25.



(iv) 5.

(v) None of the above.

(v) None of the above.

(c) Cov(X,Y) =

(v) None of the above.

(d) P(X =5]Y =3) =



(iii) 0.45.
(iv) 0.6.
(v) None of the above.

(e) The value of the moment generating function ¢y (¢) at the point
t=1n(6/5) is

(v) None of the above.

3. In the Knesset there are 900 phones. Let X; be the waiting time until
the next call to be received at the i-th phone, 1 = 1,2, ...,900. The X;’s

are independent and X; ~ Exp(1) for each i. Denote S,, = ZX“ n=
i=1
1,2,...,900.

(a) p(X1 X2, Ss) =

6 -3
(i) — é



(iv) g

(v) None of the above.
(b) For s > 0 we have fg,(s) =

(i) 2e7%.

(i) se=2.

(i) 2¢7*.

(iv) se".

(v) None of the above.

(C) P(X1 Z 1|X2 S X1> =

;-

(i) - ~ 5z
(i)~ ~ ooy
(iv) z — 6—12.

(v) None of the above.

(d) A direct application of Chebyshev’s inequality yeilds
P(810 < Sgp0 < 990) >

(i) 23/27.



(ii) 24/27.
(iii) 25/27.
(iv) 26/27.
(v) None of the above.

Remark: We mean here the best bound that can be obtained by
Chebyshev’s inequality. For example, if Chebyshev’s inequality
implies that the above probability is at most 26/27, hence it is
also at most 25/27, and (24/27, and 23/27), but only (iv) should
be marked as the correct answer.

(e) A direct application of the Central Limit Theorem implies

(i) 0.8889.

(ii) 0.9234.
(iii) 0.9561.
(iv) 0.9974.

(v) None of the above.



Solutions

1. (a)-(b) Define the random variables

1, the #th student takes AA,
X; = .
0, otherwise,

and

1, the th student takes only AA,
Y, = :
0, otherwise.

Clearly,
X; ~ B(1,0.3), Y~ B(1,0.3-(1—0.4)),
and
k k
Ry=> Xi~B(k03), Sy,=> Y;~B(k0.18).
i=1 i=1
Therefore:
Cov(X,,Y;)) = E(X;-Y;)—EX) EY)
= BE(Y) - E(X) - E(Y))
= 0.18—-0.3-0.18 =0.126.

For ¢ # j, the variables X;, Y, are independent. Therefore

Cov(Bi, Sm) = > Cov(X;,Y))

min(k,m)
= Z Cov(X;,Y;)
i=1
= 0.126 - min(k, m),



so that
0.126 - min(k,m)  0.126 - min(k,m)
VV(R) -V(S,)  +0.030996 -k -m

By (1), with £k =m =1, and with k£ = 20, m = 30, we obtain

p(Rk> SM) =

(1)

0.126
Ry, S)) = ——=2_ ~(.716,
Pl 51) = /0.030996
and 0.126 - 20
Rag, S30) = = ~ 0.584,
P20, S0) V/0.030996 - 20 - 30
respectively.

Thus, (a.iii) and (b.iv) are true.

(c) We have:

20
P(Sy =k) = (k) -0.18% . 0.8220F 0 <k < 20.

The condition P(Sy = k) > P(Ss = k + 1) is equivalent to
(k + 1)1(19 — k) - 0.82 > KkI(20 — k)! - 0.18,

namely
(k+1)-0.82> (20 — k) - 0.18,

which is valid if and only if £ > 3.
Thus, (i) is true.

(d) Evidently, {R5 < 2} C {55 < 2}, so
P(R5 < 2,55 < 2)

P(R5 <2|S5 <2) =

PR <)
P(S5 <2)

(0)-0.7°+(3)-0.3-0.74
(0) -0.825 4 (3) - 0.18 - 0.82*
0.6

Q

79.



Thus, (ii) is true.

(e) Markov’s inequality for Ssy reads P(Sy > a) < E(Sy)/a. Since
E(S3) = 20-0.18 = 3.6, we need ﬁ < 0.05, namely a > 72.
a

Thus, (ii) is true.

2. Evidently, X ~ G(1/6) and Y|x—x ~ B(k,1/2). Therefore

1 k—1
P(X:k):—(é) L k=12,

6 \6
and
1/5\* " kN /1\"
P(X = kY = — (= . Z >1 <m<
woar Q)G ez
Hence

P(Y =m)=)Y P(X =kY =m)
k=1
can easily be calculated to yield:
m =0,
12 (5\"™ .-
— |z m > 1.
3B5\7) -
(Note that for m = 0 the calculation is different than for m > 1.)

However, it is simpler to start our calculations using Py y rather than
Py even for E(Y).

3|~

PY =m) =

(a) We have:

E(Y) = ) > m Pxy(k,m)



For each k, the inner sum is the expectation of a B (k;, l) random
variable. Consequently:

E(Y)zéé(%) 7 gzé-E(X):%ﬁ:S.

Thus, (ii) is true.
(b) Similarly to the previous part:

E(Y?) = m? Pyxy(k,m)

S\ (kK
6 4 4

(E(X) + E(X?))

NE
E

T
I

I
NE
| = 3

Il
=)

e
Il
—_

(E(X) + V(X) + E*(X))

N N

1
= (6+30+36) =15,

Hence V(Y) = E(Y?) — E*(Y) = 9.
Thus, (iv) is true.

(c) Similarly to (a) and (b),

k
Z k’ m ny(k’,m)

M8

E(XY) =
k=1 m=0
00 1 k—1 k
RXON
k=1
1
= 5E(X2)=33.

Therefore:

Cov (X,Y) = E(XY)— E(Y)-E(X)=33—-3-6=15.
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3.

Thus, (ii) is true.
(d) Obviously:

P(X =5y =3) =

Thus, (i) is true.

(e) A routine calculation yields:

In particular:

Thus, (ii) is true.

(a) Since X; ~ Exp(1), we have E(X;) = 1 and E(X?) = V(X;) +
F*(X;) =1+ 1=2. We have:

Cov(X1X5,55) = Cov(X1Xs, X7 + X5)
= Cov(X1 X3, X7) + Cov(X;1 X5, X5)
= 2. Cov(X, Xy, X))
= 2-(E(X}])- E(X2) — E*(X1) - E(X2))
2-(2-1-1*-1)=2.

Also,

= B(X{) BE(X3) - B*(X)) - B*(X,)
= 2.2-1*.1*=3,
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and V(9;) =V (X; + Xo) = V(X;) + V(X3) = 2. Hence:

. COV(XlXQ,SQ) . 2 . 4
pLXXe 52) = JV(X0Xa) V(Sy) 2.3 V3

Thus, (iv) is true.

(b) Obviously, Fs,(s) for s < 0. For s > 0:

Fs,(s) = P(X1+X3<5s)

s s—x1
= /da:1/ e T2y,
0 0
S
1

— / e ™ (1 — et day
0

= 1—¢e°—se "’

It follows that:
i [set s>,
fSQ(S)F52<S){ O, s<0.
Thus, (iv) is true.

(c) We have:

[oe} 1
PX;>1,Xo<X;) = / e_xldxl/ e “2dxy
1 0

By symmetry, P(X, < X;) = 1. Therefore:

PX1>1,X<X)) 2 1
P(X, > 11X, < X) = PG X e

Thus, (iv) is true.
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(d) Clearly, E(Sg()()) = 900E(X1) =900 and V(Sgoo) = QOOV(Xl) = 900.

Since Sggp is continuous,

= 1 — P(|Se00 — E(S900)| > 90)
V(Sgoo) - 8

9202 9

v

Thus, (ii) is true.

(e) We have:

900
P(810 < Sgoo < 990) = P(810 <> X; < 990).

i=1
Therefore, the required probability is

900

> Xi — E(Son)

10 — - —
810 — 900 = - 990 — 900 B(3)_ (-3)
/900 V(Sa00) V900
= 20(3) -1
~ 0.9974.

Thus, (iv) is true.
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