
Topics in Algorithms

Exercises

1 Generation of Basic Combinatorial Objects

1.1 Generation of Subsets

1. Consider the sum:
∑

(ε1,...,εn)∈{0,1}n
f(ε1, . . . , εn)

(a) Show that it may be calculated in O(n) time in each of the
following cases:

(i) f(ε1, . . . , εn) = c1ε1+. . .+cnεn for some constants c1, . . . , cn.

(ii) f(ε1, . . . , εn) = ac1ε1+...+cnεn for some constants a, c1, . . . , cn.

(iii) f(ε1, . . . , εn) = cos(c1ε1 + . . . + cnεn) for some constants
c1, . . . , cn. (Hint: cos θ = (eiθ + e−iθ)/2.)

(b) How fast can you calculate the sum above if f(ε1, . . . , εn) =
P (c1ε1 + . . . + cnεn) for some polynomial P and constants
c1, . . . , cn?

2. Put:

Mn =
1

2n

∑

(ε1,...,εn)∈{0,1}n

√√√√
n∑

i=1

εi .

(a) Write Mn = E(h(X)), where X is a random variable whose
distribution belongs to some well-known family of distributions
and h : R−→R is a suitable function.

(b) Use the inequality E2(Y) ≤ E(Y 2), which holds for any random

variable Y , to deduce that Mn ≤
√
n/2 .

1

(c) Employ the subadditivity of the mapping x → √x (i.e., the

property
√
a+ b ≤ √a +

√
b for a, b ≥ 0) to obtain the same

conclusion.

(d) Show that Mn =
√

n
2
· (1 − o(1)). (Hint: Use Chebyshev’s

inequality to show that for “most” n-tuples (ε1, . . . , εn) we have∑n
i=1 εi >

n
2
− n2/3 .)

3. We need to go over a certain family of subsets of {a1, . . . , an}.
The following algorithm has been suggested: Go over all subsets
using the binary expansion approach, and for each of them test
whether it belongs to the required family or not. Find the time
complexity of the algorithm, and suggest improvements to the algo-
rithm if possible, if the family consists of all

(a) subsets of even size;

(b) subsets of size bn/2c;
(c) subsets not containing adjacent elements (i.e., if ai belongs to

the subset for some i, then ai+1 does not).

4. In our construction of a Gray code we may add the coordinates
in any way, which gives in principle n! Gray codes. Are the paths
obtained in this way all different from each other?

5. Consider the Tower of Hanoi Problem. Let Mn be the sequence
of length 2n − 1 recording which disk moves at each step of the
process if there are n disks. Prove that Mn = Tn, where Tn is the
sequence, introduced in class, of bits changing when going over all
elements of {0, 1}n by the Gray code.

6. Consider the set

B = {0, 1, . . . , d1 − 1} × {0, 1, . . . , d2 − 1} × . . .× {0, 1, . . . , dk − 1},

where d1, d2, . . . , dk ≥ 2 are integers. Two elements (x1, . . . , xk) and
(y1, . . . , yk) in B are adjacent if they are at a distance of 1 apart,
i.e., for some 1 ≤ l ≤ k we have |yl − xl| = 1 and yi = xi for every
i 6= l. A Gray code for B is a sequence of elements of B, containing a
unique occurrence of each element of B, in which consecutive entries
are adjacent.

(a) Show that, for any k-tuple (d1, . . . , dk), the set B admits a Gray
code.

(b) Characterize those k-tuples for which B admits a Gray code
with the additional property that the last element of the se-
quence is adjacent to the first.

2

7. The solution presented in class to the problem of selecting a
random subset of an n-element set (or, equivalently, a sequence of
length n over {0, 1}) involves n selections of random numbers. The
following algorithm, which requires a single selection of a random
number, has been suggested: Select a random number r ∈ [0, 1),
multiply it by 2n and take the integer part s = b2nrc. The bits of s
form a random sequence as required.

(a) Is the algorithm theoretically correct?

(b) What do you expect the algorithm to yield in practice for large
n (say, n = 100)?

1.2 Generation of Permutations

8. Let P be an arbitrary fixed subset of the set of all permutations
of {1, 2, . . . , n}. We want to design an algorithm which, given a
permutation σ, returns the smallest permutation (according to the
lexicographic order) in P which is greater or equal to σ (and returns
the smallest permutation in P if σ is greater than all elements of
P).

(a) The following algorithm has been suggested: Start with π = σ.
While π /∈ P , replace π by its successor. Analyze this algorithm
in the average case and the worst case if P is the set

(i) Dn of all derangements (permutations σ with σ(i) 6= i for
each i);

(ii) NDn of all non-derangements.

(b) Suggest worst-case polynomial time algorithms for the problem
for both Dn and NDn. Analyze their performance.

9. A permutation σ = (σ1, σ2, . . . , σn) is cup-shaped if σ1 > σ2 >
. . . > σk < σk+1 < . . . < σn for some 1 ≤ k ≤ n. Design an
algorithm which goes over all cup-shaped permutations in linear
time (in the number of such permutations).

10. In the algorithm for traversing the set of all permutations with
minimal changes, at each stage exactly two elements change their
locations. How many elements on the average change their locations
at each stage in the algorithm which traverses the permutations in
lexicographic order? (Figure out how this average behaves as the
number of elements grows to infinity rather than trying to obtain
an exact formula for each n.)

3

11. Which permutation is the one to be encountered last when we
traverse all permutations with minimal changes?

12. The three algorithms below have been suggested for selecting
a random permutation of 1, 2, . . . , n. For each of them, determine
whether it is correct (i.e., chooses each permutation with the same
probability 1/n!) and, if so, find the average number of selections
of random integers required to obtain a random permutation. How
does this average behave as n→∞?

(a) Choose n random integers between 1 and n until the chosen
n-tuple forms a permutation.

(b) We need to select σ1, σ2, . . . , σn. The numbers are selected one
by one. At the k-th stage, k = 1, 2, . . . , n, select a random
integer between 1 and n repeatedly until it is distinct from all
those selected before, and set σk as this integer.

(c) Start with the permutation (1, 2, . . . , n). Repeatedly select two
random integers i and j between 1 and n, and swap σi and σj.
Repeat this procedure l times, where l is sufficiently large.

1.3 Generation of Subsets of a Fixed Size

13. Suppose we want to go over the set of all subsets of size k of
{1, 2, . . . , n} with minimal changes, where the notion of a minimal
change is restricted to include only interchanges of consecutive num-
bers, i.e., where a number s is removed from the subset and s+ 1 is
added or vice versa.

(a) Show that, if n is odd and
(
n
k

)
is even, then it is impossible to

go over the set with minimal changes.

(b) Show that there exist infinitely many pairs (n, k) for which it
is possible to go over the set with minimal changes.

14. Consider the set of all subsets of size either k or k + 1 of a set
of size n. A minimal change of a subset consists of either removing
an element from the subset or adjoining an element to it.

(a) Prove that, if n ≥ 3 and n 6= 2k + 1, it is impossible to go over
the set with minimal changes.

(b) Show that, for (n, k) = (1, 0), (2, 0), (3, 1), (5, 2), it is indeed
possible to go over the set with minimal changes.

4

(c) Let n = 2k+ 1 ≥ 3. Suppose we go over all subsets of the given
set using the Gray code, shown in class. Now omit all subsets of
sizes other than k and k+1. Show that the remaining sequence
does not yield a traversal of our set with minimal changes.

(d) Prove or disprove: If n = 2k + 1, then it is possible to go over
the set with minimal changes.

15. An algorithm for selecting a random subset of any size k of
{1, 2, . . . , n} is provided. Use it for designing an algorithm of similar
performance for finding a random subset of size k of {1, 2, . . . , n},
containing no two adjacent integers.

16. A legal expression in parentheses is a word over the alphabet
{(,)} in which the total number of parentheses of the two types is
equal and in every prefix of which the number of right parentheses
does not exceed that of left parentheses.

(a) For any positive integer n, denote by an the number of legal
expressions in parentheses of length 2n. Prove that

an = a0an−1 +a1an−2 +a2an−3 + . . .+an−1a0, n = 1, 2,

(b) Employing generating functions, conclude from part (a) that
an =

(
2n
n

)
/(n+ 1) for each n.

(c) Note that a legal expression in parentheses of length 2n is
uniquely determined by the set (of size n) of locations of the
left parentheses. Thus, given any algorithm for traversing the
set of all subsets of size k of a set of size n, we may use it (with
2n and n instead of n and k, respectively) to traverse the set of
legal expressions in parentheses of length 2n (by going over all
expressions with n left and n right parentheses and omitting
the illegal ones). Suppose the given algorithm for traversing all
subsets of size k is linear. Analyze the suggested algorithm for
traversing all legal expressions in parentheses.

(d) Develop a linear time algorithm for traversing all legal expres-
sions in parentheses of length 2n in lexicographic order.

(e) Using parts (a) and (b), develop an algorithm of linear expected
time for selecting a random legal expression in parentheses of
length 2n.

17. A subset of {1, 2, . . . , n} is sparse if it contains no two adjacent
numbers.

(a) Suppose a linear time algorithm for traversing the set of all
subsets of {1, 2, . . . , n} of size k (for every n and k) is given.

5

Consider the following algorithm for traversing the set of all
sparse subsets of {1, 2, . . . , n} of size k: Go over all subsets of
size k and omit those which are not sparse. Is the suggested
algorithm linear? If yes – prove it, if not – explain why not and
suggest a linear time algorithm.

(b) Suppose a linear time algorithm for traversing the set of all
subsets of size k with minimal changes is given. Use it to
develop a linear time algorithm for traversing the set of all
sparse subsets of size k with minimal changes.

(c) Develop an algorithm for selecting a random sparse subset of
size k which works in time O(k).

1.4 Generation of Partitions

18. Let P (n, k) be the set of partitions of n whose maximal com-
ponent is k.

(a) Modify the algorithm presented in class, for traversing the set
of all partitions of n in lexicographic order, to a linear time
algorithm for traversing P (n, k) in lexicographic order.

(b) Consider the algorithm presented in class for traversing the set
of all partitions of n in vocabulary order. Explain why it basi-
cally solves also the problem of traversing P (n, k) in vocabulary
order.

19. Denote by p(n) the number of partitions of n (where we agree
that p(0) = 1) and by p(n, k) the number of those partitions of n
whose maximal component is k.

(a) Denote by f the generating function of the double sequence
(p(n, k))∞n,k=0, namely

f(x, y) =

∞∑

n=0

∞∑

k=0

p(n, k)xnyk.

Prove that f satisfies the functional equation

f(x, xy) = (1− xy)f(x, y).

(b) Let g be the generating function of the sequence (p(n))∞n=0.
Express g in terms of f .

(c) Show that p(n+ 1) > p(n) for n ≥ 1.

6

(d) Show that p(n+ 1, k) ≥ p(n, k) for each n and k.

(e) For each fixed k, find a polynomial Q such that p(n, k) =
Θ(Q(n)).

(f) Prove that p(n, k) ≤
(
n
k

)
for each n and k.

(g) Use the preceding part to obtain an upper bound on p(n).

(h) Obtain the upper bound on p(n), obtained in the preceding
part, directly (i.e., without using p(n, k)).

(i) Prove that p(n) ≥ 2C
√
n for every n ≥ 1 for an appropriate con-

stant C > 0. (Hint: Restrict yourself to partitions using only
some of the possible integers, and such that each component,
except perhaps for 1, appears at most once.)

1.5 Generation of Set Partitions

20. For integers n ≥ k ≥ 1, denote by P(n) the set of all partitions
of the set {1, 2, . . . , n} and by P(n, k) the set of all partitions into
k components. Put an = |P(n)| and an,k = |P(n, k)|.
(a) Prove that for every fixed k we have an,k = Θ(kn).

(b) Conclude from the previous part that the generating function
of the sequence (an) converges only at the point 0.

(c) Prove that for every fixed k we have an,n−k = Θ(Q(n)) for an
appropriate polynomial Q.

(d) Find an explicit formula for an,2.

(e) Same for an,3.

(f) Same for an,n−1.

(g) Same for an,n−2.

(h) Prove that nan ≤ an ≤ nbn for suitable constants b > a > 0 for
all sufficiently large n.

(i) Consider the order on P(n) according to which the algorithm
given in class produces the partitions. Design an algorithm
which, given a partition in P(n, k), produces the next partition
belonging to P(n, k) (or reports that the given partition is the
last in P(n, k)). The algorithm should work in time O(n), with
the implicit constant independent of k.

7

1.6 Generation of Random Variates from Discrete Distri-
butions

21. Following are several distributions, defined in terms of prob-
ability functions, supported on {1, 2, . . . , n}. In each case, pk de-
notes the probability of k, and the constant c is determined so that∑n

k=1 pk = 1. We use the following method for choosing random
variates from the distribution. A random number x ∈ [0, 1) is se-
lected, and is compared with the number p1, then with p1 +p2, then
with p1 + p2 + p3, and so forth, until for the first time the accumu-
lated sum of pi’s exceeds x. If

∑r−1
k=1 pk ≤ x <

∑r
k=1 pk, then we

select the number r. Determine the order of magnitude of the ex-
pected time required by the algorithm for selecting a single random
variate. (Ignore any calculations performed once. We refer only to
those which need to be done each time we select another variate.)

(a) pk = c/k.

(b) pk = c/k2.

(c) pk = c/k3.

(d) pk = c/ log(k + 1).

22. For each of the following distributions, defined similarly to
those of the preceding exercise, design a linear expected time al-
gorithm for selecting random variates.

(a) pk = ck2.

(b) pk = c/k(k + 1).

(c) pk = ck2−k.

(d) pk = cFk, where (Fk)
∞
k=0 is the Fibonacci sequence.

(e) pk = c(1 + sin k).

(f) pk = c cos2 k.

8

