Problems

1. Check if the following functions have a saddle point

$$
\begin{gathered}
F(x, y)=(x-y)^{2}, \quad 0 \leq x, y \leq 1 \\
F(x, y)=(x-y)^{2}-0.5 x^{2}, \quad-1 \leq x \leq 1,-0.5 \leq y \leq 0.5
\end{gathered}
$$

2. Find a solution of the following problems:
(a)

$$
\max \left(3 x_{1}+2 x_{2}\right)
$$

subject to

$$
\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \leq 9, x_{1}, x_{2} \geq 0
$$

(b)

$$
\min \left(8 x_{1}^{2}+2 x_{2}^{2}\right)
$$

subject to

$$
x_{1}^{2}+x_{2}^{2} \leq 9,1 \leq x_{1} \leq 2, x_{2} \geq 1
$$

3. Perform one step of the Newton method for the minimization of the functions:
(a)

$$
f(x)=x_{1}^{4}+x_{2}^{2} .
$$

The initial point is $x_{0}=(1,1)$.
(b)

$$
f(x)=\left(x_{1}^{4}+x_{2}^{4}+x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{2}+x_{1}+x_{2}\right) .
$$

The initial point is $(1,0)$.
4. Perform one step of the feasible directions method for problems (2a) and (2b) beginning at the point $x_{0}=(1,1)$.
5. Find a and b such that the function

$$
f(x)= \begin{cases}b(x-\alpha), & x \leq \alpha, \\ a(x-\alpha), & x>\alpha\end{cases}
$$

is a convex function.
6. Find an area where the following functions are convex

$$
\begin{gathered}
f(x)=\sum_{i=1}^{n} x_{j} \ln x_{j} \\
f(x, y)=\sin (x)+\sin (y) \\
f(x, y)=x^{2}-3 x y+y^{2} \\
f(x)=x_{1}^{4}+x_{2}^{4}-x_{1} x_{2}
\end{gathered}
$$

7. Construct a dual problem for the following problem:

$$
\min \sum_{i=1}^{n} e^{x_{i}}
$$

subject to

$$
\sum_{i=1}^{n} x_{i} \geq 1
$$

8. We have a bar 140 cm , and we can cut it into blanks:

20 cm , price $\$ 3$,
40 cm , price $\$ 8$,
60 cm , price $\$ 12$,
100 cm , price $\$ 16$.
Find a cutting of maximal worth.
9. An electronic system consists of 4 components. The components have the following probabilities of failure and prices:

Component 1: Probability 0.2, price $\$ 10$;
Component 2: Probability 0.15, price $\$ 10$;
Component 3: Probability 0.1, price $\$ 15$;
Component 4: Probability 0.05 , price $\$ 20$.
It is possible to use every component in parallel. We have a budget $\$ 50$. What and how many components should be used in parallel to maximize the reliability of the system?
10. Check if point $\left(\frac{33}{7}, \frac{6}{7}\right)$ is a solution of the problem

$$
\min \left(4\left(x_{1}-6\right)^{2}+1.5\left(x_{2}-2\right)^{2}\right)
$$

$$
\begin{gathered}
0.5 x_{1}+x_{2} \leq 4 \\
3 x_{1}+x_{2} \leq 15 \\
x_{1}+x_{2} \geq 1 \\
x_{1} \geq 0, x_{2} \geq 0
\end{gathered}
$$

