
 נא להוכיח שפונקציה (v) היא פונקציה קמורה ב- ${ }^{n}$. ${ }^{2}$.
2. נא למצוא בעזרת משפט קון-טקר את פתרון הבעיה:

$$
\begin{aligned}
& \min \quad x \\
& x^{2}+y^{2} \leq 1 \\
& x^{2} \leq y \\
& x+y \leq 0 .
\end{aligned}
$$

האם כל התנאים של המשפט מתקיימים?
הפתרון. בבציה:
. $f(x, y)=x, \quad g_{1}(x, y)=x^{2}+y^{2}-1, \quad g_{2}(x, y)=x^{2}-y, \quad g_{3}(x, y)=x+y$
 , $\nabla g_{2}(x, y)=(2 x,-1), \quad \nabla g_{1}(x, y)=(2 x, 2 y) \quad \nabla f(x, y)=(1,0): \quad \nabla g_{i}-1 \quad \nabla f \quad$ נחשב . $\nabla g_{3}(x, y)=(1,1)$
$\lambda_{1} \geq 0, \quad \lambda_{2} \geq 0, \quad \lambda_{3} \geq 0$ אם (x,y) הוא הפתרון של הבעיה אז קיימים מספרים שמקיימים לתנאים:
3. במחסן ניתן לאחסן עך n יחידות מוצר. נניח שהביקוש הוא אקראי ו-p ${ }^{-}$היא ההסתברות שהביקוש בתקופה מסוימת יהיה i יחידות המוצר. ידועים הנתונים הבאים:

 בתחילת התקופה. -3 הקנס להעדר מלאי: אם הביקוש בתקופה הוא מעל המלאי ל- j יחידות המוצר, הקנס הוא (j)g.

נא לרשום את משוואת בלמן לפונקציה (Z() מל כל ההוצאות לזמן בלתי מוגבל אם מתחילים במלאי התחלתי ξ (. יש לקחת בחשבון מקדם הוון . α (discount factor)

נא לפתור את משוואת בלמן עבור הנתונים הבאים:

$$
\mathrm{n}=5.1
$$

$$
p_{0}=0.2, p_{1}=0.2, p_{2}=0.2, p_{3}=0.2, p_{4}=0.2, p_{5}=0.2
$$

$$
C(Q)=50 Q .3^{\bullet}
$$

$$
f(\xi)=20 \xi .4 \bullet
$$

$$
\begin{array}{r}
g(j)=100 j . \\
\alpha=0.9 .
\end{array}
$$

4. נא לבצע שתי איטרציות של שיטת הכיוונים האפשריים לבעיה:

$$
\begin{aligned}
& \min (x+y) \\
& x^{2}-y \leq 0 \\
& y-1 \leq 0
\end{aligned}
$$

x=0.5, y=0.25 . הקירוב ההתחלתי הוא
5הוכח: פונקציה f(x) קמורה וחסומה בכל מרחב E היא פונקציה קבועה.
6. ישנו מוט מתכת באורך 2000 mm . יש לחתוך את המוט למוטות קצרים. לכל מוט קצר ידועים אורך ומחיר שלו:

מורך	מחיר
900 mm	2500
700 mm	3000
600 mm	5000
500 mm	700
300 mm	500

כיצד לחתוך את המוט הארוך על מנת לקבל מחיר מקסימלי. 7. נא לבצע שתי איטרציות של שיטת הכיוונים האפשריים לבעיה:

$$
\begin{aligned}
& \min (x+y) \\
& x^{2}-y \leq 0 \\
& y-1 \leq 0
\end{aligned}
$$

הקירוב ההתחלתי הוא . x=0.5, y=0.25

> 8. נתונה פוטנקציה $f(x, y)=\frac{x^{2}}{y}$ מוגדרת בקבוצה $C=\left\{(x, y) \in R^{2}: y>0\right\}$ בוג א' הוכח ש-f היא פונקציה קמורה ב- C ב' האם f קמורה ממש?
觙 $=1, p_{i+1} \geq p_{i}$

בסוף כל שנה מחליטים האם לקנות מכונה חדשה או להמשיך להשתמש במכונה ישנה. המחיר למכונה חדשה הוא A. אם משתמששים במכונה ישנה בגיל i i, , ההוצאות שנת לניצול המכונה הן

מכונה חדשה במחיר B B ($B>A$).
א'. כתוב את משוואת בלמן לפונקציה מוּ
 ב'. כתוב את הבעיה בתכנון ליניארי שמאפשרת למצוא את הפתרון של משוואת כלמן. 10. נניח שA קבוצה קמורה אם נקודת קיצון, $f(x)$ היא פונקציה קמורה ממש ב-A, $\max _{x \in A} f(x)$ וקיים הוכח: אם (x x^{*} היא נקודת קיצון של $\max _{x \in A} f(x)=f\left(x^{*}\right.$.
11. פתור הבעיה:

$$
\max \left(x_{1}^{2}+2 x_{2}+\frac{1}{x_{3}+1}+2 x_{4}^{2}\right)
$$

בתנאים

$$
x_{1}+2 x_{2}+x_{3}+3 x_{4}=6,
$$

, $x_{j} \geq 0$

