
Problems

1. Check if the following function has a saddle point

F (x, y) = (x− y)2, 0 ≤ x, y ≤ 1;

Solution. We should check that

min
0≤x≤1

max
0≤y≤1

F (x, y) = max
0≤y≤1

min
0≤x≤1

F (x, y).

Let x ∈ [0, 1] be fixed. Find max0≤y≤1 F (x, y). It is clear that max0≤y≤1(x− y)2

is attained at y = 0 or y = 1. Therefore

g(x) = max
0≤y≤1

(x− y)2 = max(x2, (x− 1)2).

Then min0≤x≤1 g(x) is attained at x = 0.5 and equal to 0.25. Thus

min
0≤x≤1

max
0≤y≤1

F (x, y) = 0.25.

Now calculate max0≤y≤1 min0≤x≤1 F (x, y). Let y ∈ [0, 1] be fixed. Then min0≤x≤1(x−
y)2 = 0. Hence

max
0≤y≤1

min
0≤x≤1

F (x, y) = 0,

and

min
0≤x≤1

max
0≤y≤1

F (x, y) 6= max
0≤y≤1

min
0≤x≤1

F (x, y),

that is, F (x, y) does not have a saddle point.

2. Find a solution of the following problems:

(b)

min(8x2
1 + 2x2

2)

subject to

x2
1 + x2

2 ≤ 9, 1 ≤ x1 ≤ 2, x2 ≥ 1.

Solution. It is clear that min(8x2
1+2x2

2) is attained at the point x = (x1, x2)

with minimal possible values of x1 and x2, that is, at x∗ = (1, 1). This is a feasible

point, and we should verify that it satisfies the conditions of the Kuhn-Tucker

theorem.

In our case

f(x) = 8x2
1 + 2x2

2,
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g1(x) = x2
1 + x2

2 − 9,

g2(x) = 1− x1,

g3(x) = x1 − 2,

g4(x) = 1− x2,

∇f(x) = (16x1, 4x2),

∇g1(x) = (2x1, 2x2),

∇g2(x) = (−1, 0),

∇g3(x) = (1, 0),

∇g4(x) = (0,−1).

Verify that there exist non-negative numbers λ1, λ2, λ3, λ4 such that

∇f(x∗) +
4∑

i=1

λi∇g(x∗) = 0, (1)

and λi = 0 for non-active constraints, that is, for i with gi(x
∗) < 0. Since g1 and

g3 are non-active at x∗, λ1 = λ3 = 0, and we have from (1):

16 + λ2(−1) = 0,

4 + λ4(−1) = 0.

Hence λ1 = 0, λ2 = 16, λ3 = 0, λ4 = 4 are non-negative and satisfy (1).

Since f and gi are convex functions and the regularity condition is satisfied,

point x∗ = (1, 1) is the solution of the problem.

5. Find a and b such that the function

f(x) =

{
b(x− α), x ≤ α,
a(x− α), x > α

is a convex function.

Solution. A function of one variable is convex iff its derivative increases.

The derivative of f is b, for x ≤ α, and a for x > α. Hence f is a convex function

iff a ≥ b.

6. Find an area where the following functions are convex
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f(x) =
n∑

i=1

xj ln xj;

Solution. The Hessian is a diagonal matrix with hii = 1/xi. Hence the

Hessian is a positive definite matrix, and f is a convex function, for x > 0.

f(x, y) = x2 − 3xy + y2.

Solution. Calculate the Hessian

H =

(
2 −3
−3 2

)

Since det H = −5, f is not a convex function.

f(x) = x4
1 + x4

2 − x1x2

Solution. Calculate the Hessian

H =

(
12x2

1 −1
−1 12x2

2

)

H is a positive semi-definite matrix if its diagonal elements are non-negative as

well as its determinant. The diagonal elements are non-negative for all x, and

detH = 144x2
1x

2
2 − 1. Therefore f is convex on a convex set which is contained

in {x : x2
1x

2
2 ≥ 1/144}.

7. Construct a dual problem for the following problem:

min
n∑

i=1

exi

subject to
n∑

i=1

xi ≥ 1.

Solution. Construct the Lagrange function:

L(x, λ) =
n∑

i=1

exi + λ(1−
n∑

i=1

xi).

The dual problem (D) is:

find

max
λ≥0

min
x

L(x, λ).
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Since L(x, λ) is a convex and differentiable function with respect to x, problem

(D) is equivalent to

max
λ≥0

ÃL(x, λ).

subject to conditions:

∇xL(x, λ) = 0,

that is

exi − λ = 0, for all i.

8. We have a bar 140 cm, and we can cut it into blanks:

20 cm, price $3,

40 cm, price $8,

60 cm, price $12,

100 cm, price $16.

Find a cutting of maximal worth.

Solution. The problem is:

find

max(3x1 + 8x2 + 12x3 + 16x4)

subject to

20x1 + 40x2 + 60x3 + 100x4 ≤ 140,

xj are non-negative integers denoting how many blanks of length lj should be

cut from the bar.

The problem can be solved by dynamic programming:

Fk+1(l) = max
x

(ck+1x + Fk(l − lk+1x)),

F(0)=0.
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