Problems

1. Check if the following function has a saddle point

$$
F(x, y)=(x-y)^{2}, \quad 0 \leq x, y \leq 1
$$

Solution. We should check that

$$
\min _{0 \leq x \leq 1} \max _{0 \leq y \leq 1} F(x, y)=\max _{0 \leq y \leq 1} \min _{0 \leq x \leq 1} F(x, y) .
$$

Let $x \in[0,1]$ be fixed. Find $\max _{0 \leq y \leq 1} F(x, y)$. It is clear that $\max _{0 \leq y \leq 1}(x-y)^{2}$ is attained at $y=0$ or $y=1$. Therefore

$$
g(x)=\max _{0 \leq y \leq 1}(x-y)^{2}=\max \left(x^{2},(x-1)^{2}\right)
$$

Then $\min _{0 \leq x \leq 1} g(x)$ is attained at $x=0.5$ and equal to 0.25 . Thus

$$
\min _{0 \leq x \leq 1} \max _{0 \leq y \leq 1} F(x, y)=0.25
$$

Now calculate $\max _{0 \leq y \leq 1} \min _{0 \leq x \leq 1} F(x, y)$. Let $y \in[0,1]$ be fixed. Then $\min _{0 \leq x \leq 1}(x-$ $y)^{2}=0$. Hence

$$
\max _{0 \leq y \leq 1} \min _{0 \leq x \leq 1} F(x, y)=0
$$

and

$$
\min _{0 \leq x \leq 1} \max _{0 \leq y \leq 1} F(x, y) \neq \max _{0 \leq y \leq 1} \min _{0 \leq x \leq 1} F(x, y),
$$

that is, $F(x, y)$ does not have a saddle point.
2. Find a solution of the following problems:
(b)

$$
\min \left(8 x_{1}^{2}+2 x_{2}^{2}\right)
$$

subject to

$$
x_{1}^{2}+x_{2}^{2} \leq 9,1 \leq x_{1} \leq 2, x_{2} \geq 1
$$

Solution. It is clear that $\min \left(8 x_{1}^{2}+2 x_{2}^{2}\right)$ is attained at the point $x=\left(x_{1}, x_{2}\right)$ with minimal possible values of x_{1} and x_{2}, that is, at $x^{*}=(1,1)$. This is a feasible point, and we should verify that it satisfies the conditions of the Kuhn-Tucker theorem.

In our case

$$
f(x)=8 x_{1}^{2}+2 x_{2}^{2},
$$

$$
\begin{gathered}
g_{1}(x)=x_{1}^{2}+x_{2}^{2}-9, \\
g_{2}(x)=1-x_{1}, \\
g_{3}(x)=x_{1}-2, \\
g_{4}(x)=1-x_{2}, \\
\nabla f(x)=\left(16 x_{1}, 4 x_{2}\right), \\
\nabla g_{1}(x)=\left(2 x_{1}, 2 x_{2}\right), \\
\nabla g_{2}(x)=(-1,0), \\
\nabla g_{3}(x)=(1,0), \\
\nabla g_{4}(x)=(0,-1) .
\end{gathered}
$$

Verify that there exist non-negative numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ such that

$$
\begin{equation*}
\nabla f\left(x^{*}\right)+\sum_{i=1}^{4} \lambda_{i} \nabla g\left(x^{*}\right)=0 \tag{1}
\end{equation*}
$$

and $\lambda_{i}=0$ for non-active constraints, that is, for i with $g_{i}\left(x^{*}\right)<0$. Since g_{1} and g_{3} are non-active at $x^{*}, \lambda_{1}=\lambda_{3}=0$, and we have from (1):

$$
\begin{gathered}
16+\lambda_{2}(-1)=0 \\
4+\lambda_{4}(-1)=0
\end{gathered}
$$

Hence $\lambda_{1}=0, \lambda_{2}=16, \lambda_{3}=0, \lambda_{4}=4$ are non-negative and satisfy (1).
Since f and g_{i} are convex functions and the regularity condition is satisfied, point $x^{*}=(1,1)$ is the solution of the problem.
5. Find a and b such that the function

$$
f(x)= \begin{cases}b(x-\alpha), & x \leq \alpha, \\ a(x-\alpha), & x>\alpha\end{cases}
$$

is a convex function.
Solution. A function of one variable is convex iff its derivative increases. The derivative of f is b, for $x \leq \alpha$, and a for $x>\alpha$. Hence f is a convex function iff $a \geq b$.
6. Find an area where the following functions are convex

$$
f(x)=\sum_{i=1}^{n} x_{j} \ln x_{j}
$$

Solution. The Hessian is a diagonal matrix with $h_{i i}=1 / x_{i}$. Hence the Hessian is a positive definite matrix, and f is a convex function, for $x>0$.

$$
f(x, y)=x^{2}-3 x y+y^{2}
$$

Solution. Calculate the Hessian

$$
H=\left(\begin{array}{cc}
2 & -3 \\
-3 & 2
\end{array}\right)
$$

Since det $H=-5, f$ is not a convex function.

$$
f(x)=x_{1}^{4}+x_{2}^{4}-x_{1} x_{2}
$$

Solution. Calculate the Hessian

$$
H=\left(\begin{array}{cc}
12 x_{1}^{2} & -1 \\
-1 & 12 x_{2}^{2}
\end{array}\right)
$$

H is a positive semi-definite matrix if its diagonal elements are non-negative as well as its determinant. The diagonal elements are non-negative for all x, and $\operatorname{det} H=144 x_{1}^{2} x_{2}^{2}-1$. Therefore f is convex on a convex set which is contained in $\left\{x: x_{1}^{2} x_{2}^{2} \geq 1 / 144\right\}$.
7. Construct a dual problem for the following problem:

$$
\min \sum_{i=1}^{n} e^{x_{i}}
$$

subject to

$$
\sum_{i=1}^{n} x_{i} \geq 1
$$

Solution. Construct the Lagrange function:

$$
L(x, \lambda)=\sum_{i=1}^{n} e^{x_{i}}+\lambda\left(1-\sum_{i=1}^{n} x_{i}\right)
$$

The dual problem (D) is:
find

$$
\max _{\lambda \geq 0} \min _{x} L(x, \lambda)
$$

Since $L(x, \lambda)$ is a convex and differentiable function with respect to x, problem (D) is equivalent to

$$
\max _{\lambda \geq 0} £(x, \lambda) .
$$

subject to conditions:

$$
\nabla_{x} L(x, \lambda)=0
$$

that is

$$
e^{x_{i}}-\lambda=0, \text { for all } i
$$

8. We have a bar 140 cm , and we can cut it into blanks:

20 cm , price $\$ 3$,
40 cm , price $\$ 8$,
60 cm , price $\$ 12$,
100 cm , price $\$ 16$.
Find a cutting of maximal worth.
Solution. The problem is:
find

$$
\max \left(3 x_{1}+8 x_{2}+12 x_{3}+16 x_{4}\right)
$$

subject to

$$
20 x_{1}+40 x_{2}+60 x_{3}+100 x_{4} \leq 140
$$

x_{j} are non-negative integers denoting how many blanks of length l_{j} should be cut from the bar.

The problem can be solved by dynamic programming:

$$
F_{k+1}(l)=\max _{x}\left(c_{k+1} x+F_{k}\left(l-l_{k+1} x\right)\right),
$$

$F(0)=0$.

