Unconstrained optimization

The problem (P):

$$
\min f(x), \quad x \in R^{n} .
$$

1. Gradient method

Algorithm:

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right) .
$$

Choosing α_{k} :

(i). Choose α_{k} so that

$$
f\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)=\min _{\alpha \geq 0}\left(f\left(x^{k}-\alpha \nabla f\left(x^{k}\right)\right)\right) .
$$

(ii).
(1) Choose $\alpha>0,0<\varepsilon<1,0<\lambda<1$.
(2) If

$$
\begin{equation*}
f\left(x^{k}-\alpha \nabla f\left(x^{k}\right)\right)-f\left(x^{k}\right)<-\varepsilon \alpha\left\|\nabla f\left(x^{k}\right)\right\|^{2}, \tag{1}
\end{equation*}
$$

then $\alpha_{k}=\alpha$, otherwise multiple α by λ until (1) will be satisfied.
Theorem 1.1. Let f be a continuously differentiable function, the set

$$
\left\{x: f(x) \leq f\left(x^{0}\right)\right\}
$$

is compact and α_{k} is chosen in accordance with (i) or (ii). Then

$$
\lim \left\|\nabla f\left(x_{k}\right)\right\|=0
$$

Theorem 1.2. Let f be a twice continuously differentiable function, its Hessian matrix $H(x)$ satisfies the following condition:

$$
m\|y\|^{2} \leq(H(x) y, y) \leq M\|y\|^{2}, M>m>0
$$

for each $x, y \in R^{n}, x^{0}$ ia an arbitrary initial point and α_{k} is chosen in accordance with (i) or (ii. Then

$$
x^{k} \rightarrow x^{*}, f\left(x^{k}\right) \rightarrow f\left(x^{*}\right),
$$

where x^{*} is a solution of the problem (P). Moreover the following estimate is valid:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq q^{k}\left(f\left(x^{0}\right)-f\left(x^{*}\right)\right), 0<q<1 .
$$

2. The Newton method

Algorithm.

1. $p^{k}=-H^{-1}\left(x^{k}\right) \nabla f\left(x^{k}\right)$.
2. $x^{k+1}=x^{k}+\alpha_{k} p^{k}$.

Choosing α_{k} :

(i) $\alpha_{k}=1$ for all k (Basic Newton method).
(ii). Choose α_{k} so that

$$
f\left(x^{k}+\alpha_{k} p^{k}\right)=\min _{\alpha \geq 0} f\left(x^{k}+\alpha p^{k}\right)
$$

(iii).
(1) Choose $\alpha=1,0<\varepsilon<1 / 2,0<\lambda<1$.
(2) If

$$
\begin{equation*}
f\left(x^{k}+\alpha p^{k}\right)-f\left(x^{k}\right)<\varepsilon \alpha\left(\nabla f\left(x^{k}\right), p^{k}\right) \tag{2}
\end{equation*}
$$

then $\alpha_{k}=\alpha$, otherwise multiple α by λ until (2) will be satisfied.
Theorem 2.1. Let f be three times continuously differentiable in a neighbourhood of $x^{*} \in R^{n}$, and x^{*} be a non-degenerate local minimizer of f, that is, $\nabla f\left(x^{*}\right)=0$ and $H\left(x^{*}\right)$ is positive definite. Then the Basic Newton method, starting close enough to x^{*}, converges to x^{*} quadratically.

Theorem 2.2. Let f be a strictly convex twice continuously differentiable function with the Hessian matrix satisfying the condition:

$$
m\|y\|^{2} \leq(H(x) y, y) \leq M\|y\|^{2}, M>m>0
$$

for each $x, y \in R^{n}$. If α_{k} are chosen with accordance with (ii) or (iii), then $x^{k} \rightarrow x^{*}$ for each x^{0} and

$$
\left\|x^{N+l}-x^{*}\right\| \leq C \lambda_{N} \ldots \lambda_{N+l}
$$

for some $N, C>0 . \lambda_{N+l}<1$ and $\lim _{l \rightarrow \infty} \lambda_{N+l}=0$.

3. Self-concordant functions

Let f be a three times continuously differentiable convex function defined on an open convex set Q, and $\varphi_{x, h}(t)=f(x+t h), x \in Q, h \in R^{n}, t \in R$. We say that f is a self-concordant function if

1. $\left|\varphi_{x, h}^{\prime \prime \prime}(0)\right| \leq 2\left(\varphi_{x, h}^{\prime \prime}(0)\right)^{3 / 2}$, for each $x \in Q, h \in R^{n}$.
2. If a sequence $\left\{x^{k}\right\} \subset Q$ converges to a boundary point of Q then $f\left(x^{k}\right) \rightarrow \infty$.

The second condition is irrelevant if $Q=R^{n}$

Examples

1. The convex quadratic function $f(x)=\frac{1}{2}(x, A x)+(b, x)+c(A$ is a symmetric positive semi-definite $n \times n$ matrix) is self-concordant on R^{n};
2. Function $-\ln (x)$ is self-concordant on $Q=\{x \in R: x>0\}$.
3. Let $Q=\left\{x \in R^{n}: g_{i}(x)<0, i=1,2, \ldots, m\right\}$, where $g_{i}(x)$ are linear or strict convex quadratic functions. Then

$$
f(x)=-\sum_{i=1}^{m} \ln \left(-g_{i}(x)\right)
$$

is self-concordant on Q.
Theorem 3.1. Let f be a strictly convex self-concordant below bounded function on Q. Suppose α_{k} in the Newton method is chosen as

$$
\alpha_{k}=\frac{1}{1+\lambda_{k}},
$$

where

$$
\lambda_{k}=\sqrt{\left(\nabla f\left(x^{k}\right), H^{-1}\left(x^{k}\right) \nabla f\left(x^{k}\right)\right)} .
$$

Then the Newton method has the following properties for each initial point $x^{0} \in Q$:

1. $x^{k} \in Q$, for each k;
2. $\left\{x^{k}\right\}$ converges to the unique minimizer x^{*} of f on Q;
3. the number of steps required to get an x such that $f(x)-f\left(x^{*}\right)<\varepsilon$ for $\varepsilon<0.1$ is no more than

$$
N(\varepsilon)=A\left(f\left(x^{0}\right)-f\left(x^{*}\right)+\ln \ln 1 / \varepsilon\right),
$$

where A is an absolute constant.

