Unconstrained optimization

The problem (P):

$$\min f(x), \ x \in \mathbb{R}^n.$$

1. Gradient method

Algorithm:

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k).$$

Choosing α_k :

(i). Choose α_k so that

$$f(x^k - \alpha_k \nabla f(x^k)) = \min_{\alpha \ge 0} (f(x^k - \alpha \nabla f(x^k))).$$

(ii).

- (1) Choose $\alpha > 0, 0 < \varepsilon < 1, 0 < \lambda < 1$.
- (2) If

$$f(x^k - \alpha \nabla f(x^k)) - f(x^k) < -\varepsilon \alpha \|\nabla f(x^k)\|^2,$$
(1)

then $\alpha_k = \alpha$, otherwise multiple α by λ until (1) will be satisfied.

Theorem 1.1. Let f be a continuously differentiable function, the set

$$\{x: f(x) \le f(x^0)\}$$

is compact and α_k is chosen in accordance with (i) or (ii). Then

$$\lim \|\nabla f(x_k)\| = 0.$$

Theorem 1.2. Let f be a twice continuously differentiable function, its Hessian matrix H(x) satisfies the following condition:

$$m||y||^2 \le (H(x)y, y) \le M||y||^2, \ M > m > 0,$$

for each $x, y \in \mathbb{R}^n, x^0$ is an arbitrary initial point and α_k is chosen in accordance with (i) or (ii. Then

$$x^k \to x^*, \ f(x^k) \to f(x^*),$$

where x^* is a solution of the problem (P). Moreover the following estimate is valid:

$$f(x^k) - f(x^*) \le q^k (f(x^0) - f(x^*)), \ 0 < q < 1.$$

2. The Newton method

Algorithm.

1.
$$p^{k} = -H^{-1}(x^{k})\nabla f(x^{k})$$

2. $x^{k+1} = x^{k} + \alpha_{k}p^{k}$.

Choosing α_k :

- (i) $\alpha_k = 1$ for all k (Basic Newton method).
- (ii). Choose α_k so that

$$f(x^k + \alpha_k p^k) = \min_{\alpha \ge 0} f(x^k + \alpha p^k).$$

(iii). (1) Choose $\alpha = 1, 0 < \varepsilon < 1/2, 0 < \lambda < 1.$ (2) If $f(x^k + \alpha p^k) - f(x^k) < \varepsilon \alpha (\nabla f(x^k), p^k)$ (2)

then $\alpha_k = \alpha$, otherwise multiple α by λ until (2) will be satisfied.

Theorem 2.1. Let f be three times continuously differentiable in a neighbourhood of $x^* \in \mathbb{R}^n$, and x^* be a non-degenerate local minimizer of f, that is, $\nabla f(x^*) = 0$ and $H(x^*)$ is positive definite. Then the Basic Newton method, starting close enough to x^* , converges to x^* quadratically.

Theorem 2.2. Let f be a strictly convex twice continuously differentiable function with the Hessian matrix satisfying the condition:

$$|m||y||^2 \le (H(x)y, y) \le M||y||^2, \ M > m > 0,$$

for each $x, y \in \mathbb{R}^n$. If α_k are chosen with accordance with (ii) or (iii), then $x^k \to x^*$ for each x^0 and

$$||x^{N+l} - x^*|| \le C\lambda_N \dots \lambda_{N+l}$$

for some N, C > 0. $\lambda_{N+l} < 1$ and $\lim_{l \to \infty} \lambda_{N+l} = 0$.

3. Self-concordant functions

Let f be a three times continuously differentiable convex function defined on an open convex set Q, and $\varphi_{x,h}(t) = f(x+th), x \in Q, h \in \mathbb{R}^n, t \in \mathbb{R}$. We say that f is a *self-concordant function* if

1. $|\varphi_{x,h}^{'''}(0)| \le 2(\varphi_{x,h}^{''}(0))^{3/2}$, for each $x \in Q, h \in \mathbb{R}^n$.

2. If a sequence $\{x^k\} \subset Q$ converges to a boundary point of Q then $f(x^k) \to \infty$.

The second condition is irrelevant if $Q = R^n$

Examples

1. The convex quadratic function $f(x) = \frac{1}{2}(x, Ax) + (b, x) + c$ (A is a symmetric positive semi-definite $n \times n$ matrix) is self-concordant on \mathbb{R}^n ;

2. Function $-\ln(x)$ is self-concordant on $Q = \{x \in R : x > 0\}$.

3. Let $Q = \{x \in \mathbb{R}^n : g_i(x) < 0, i = 1, 2, ..., m\}$, where $g_i(x)$ are linear or strict convex quadratic functions. Then

$$f(x) = -\sum_{i=1}^{m} \ln(-g_i(x))$$

is self-concordant on Q.

Theorem 3.1. Let f be a strictly convex self-concordant below bounded function on Q. Suppose α_k in the Newton method is chosen as

$$\alpha_k = \frac{1}{1 + \lambda_k},$$

where

$$\lambda_k = \sqrt{(\nabla f(x^k), H^{-1}(x^k) \nabla f(x^k))}.$$

Then the Newton method has the following properties for each initial point $x^0 \in Q$:

1. $x^k \in Q$, for each k;

2. $\{x^k\}$ converges to the unique minimizer x^* of f on Q;

3. the number of steps required to get an x such that $f(x)-f(x^*)<\varepsilon$ for $\varepsilon<0.1$ is no more than

$$N(\varepsilon) = A(f(x^0) - f(x^*) + \ln \ln 1/\varepsilon),$$

where A is an absolute constant.