Unconstrained optimization

The problem (P):
min f(z), = € R".

1. Gradient method

Algorithm:

oM = 2F — , V f(2F).

Choosing ay:

(). Choose oy so that

@ =V f(a") = min(f(z* = aV f(z"))).

(ii).
(1) Choose @ > 0,0 <e<1,0< A< L
(2) If
fa* —aV f(z¥)) - f(a") < —eal| V(") (1)

then oy = «, otherwise multiple o by A until (1) will be satisfied.

Theorem 1.1. Let f be a continuously differentiable function, the set
{z: fz) < fa”)}
is compact and «y is chosen in accordance with (i) or (ii). Then

lim [V f ()| = 0.

Theorem 1.2. Let f be a twice continuously differentiable function, its

Hessian matrix H (z) satisfies the following condition:
mlly|]* < (H(z)y,y) < M|y||*>, M >m >0,

for each x, y € R", 2° ia an arbitrary initial point and «, is chosen in accordance
with (i) or (ii. Then

ot — ot f(ah) — f27),
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where z* is a solution of the problem (P). Moreover the following estimate is

valid:

f@h) = f(@") < ¢"(f(2%) = f(2")), 0< g <1.

2. The Newton method

Algorithm.
1. pb = —H Y (a*)V f(a*).

2. oFl = 2k 4+ appt.
Choosing ay:
(i) ag, =1 for all k (Basic Newton method).

(ii). Choose oy so that

f(@F + apph) = m;glf(xk + aph).

(ii).
(1) Choose a=1,0<e<1/2,0 <A< 1.
(2) If
F(a* + aph) — f(*) < ca(V (), p) 2)

then ay, = «, otherwise multiple @ by A until (2) will be satisfied.

Theorem 2.1. Let f be three times continuously differentiable in a neigh-
bourhood of z* € R"™, and z* be a non-degenerate local minimizer of f, that
is, Vf(z*) = 0 and H(z") is positive definite. Then the Basic Newton method,

starting close enough to x*, converges to x* quadratically.

Theorem 2.2. Let f be a strictly convex twice continuously differentiable

function with the Hessian matrix satisfying the condition:
mly|* < (H(z)y,y) < M|ly|[*, M >m >0,

for each z, y € R". 1If oy are chosen with accordance with (ii) or (iii), then

¥ — x* for each z° and

||[L’N+l — l'*H S C)\N . ')‘N-‘rl

for some N, C >0. >\N+l < 1 and lim;_, )‘N—H =0.



3. Self-concordant functions

Let f be a three times continuously differentiable convex function defined
on an open convex set @, and ¢, ,(t) = f(x+th), x € Q,h € R",t € R. We say

that f is a self-concordant function if

"

L o, 1 (0)] < 2(90;7h(0))3/2, for each x € ), h € R™.

2. If a sequence {z¥} C @Q converges to a boundary point of @ then
f(a*) — oo.

The second condition is irrelevant if () = R"

Examples

1. The convex quadratic function f(z) = 3(z, Az) + (b,z) + ¢ (A is a

symmetric positive semi-definite n X n matrix) is self-concordant on R";
2. Function — In(x) is self-concordant on Q = {z € R: z > 0}.

3. Let Q ={z € R": ¢gi(x) <0, i=1,2,...,m}, where g;(x) are linear

or strict convex quadratic functions. Then

is self-concordant on Q).

Theorem 3.1. Let f be a strictly convex self-concordant below bounded
function on @). Suppose «aj in the Newton method is chosen as

1
1+)\k7

ap =

where

M=/ (VI (@), H-H @)V f (4).
Then the Newton method has the following properties for each initial point
20 € Q:
1. 2% € Q, for each k;
2. {z*} converges to the unique minimizer x* of f on Q;
3. the number of steps required to get an x such that f(z) — f(z*) < ¢ for

£ < 0.1 is no more than
N(e) = A(f(2") = f(z*) + Inln1/e),

where A is an absolute constant.



