
Unconstrained optimization

The problem (P):

min f(x), x ∈ Rn.

1. Gradient method

Algorithm:

xk+1 = xk − αk∇f(xk).

Choosing αk:

(i). Choose αk so that

f(xk − αk∇f(xk)) = min
α≥0

(f(xk − α∇f(xk))).

(ii).

(1) Choose α > 0, 0 < ε < 1, 0 < λ < 1.

(2) If

f(xk − α∇f(xk))− f(xk) < −εα‖∇f(xk)‖2, (1)

then αk = α, otherwise multiple α by λ until (1) will be satisfied.

Theorem 1.1. Let f be a continuously differentiable function, the set

{x : f(x) ≤ f(x0)}

is compact and αk is chosen in accordance with (i) or (ii). Then

lim ‖∇f(xk)‖ = 0.

Theorem 1.2. Let f be a twice continuously differentiable function, its

Hessian matrix H(x) satisfies the following condition:

m‖y‖2 ≤ (H(x)y, y) ≤ M‖y‖2, M > m > 0,

for each x, y ∈ Rn, x0 ia an arbitrary initial point and αk is chosen in accordance

with (i) or (ii. Then

xk → x∗, f(xk) → f(x∗),
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where x∗ is a solution of the problem (P). Moreover the following estimate is

valid:

f(xk)− f(x∗) ≤ qk(f(x0)− f(x∗)), 0 < q < 1.

2. The Newton method

Algorithm.

1. pk = −H−1(xk)∇f(xk).

2. xk+1 = xk + αkp
k.

Choosing αk:

(i) αk = 1 for all k (Basic Newton method).

(ii). Choose αk so that

f(xk + αkp
k) = min

α≥0
f(xk + αpk).

(iii).

(1) Choose α = 1, 0 < ε < 1/2, 0 < λ < 1.

(2) If

f(xk + αpk)− f(xk) < εα(∇f(xk), pk) (2)

then αk = α, otherwise multiple α by λ until (2) will be satisfied.

Theorem 2.1. Let f be three times continuously differentiable in a neigh-

bourhood of x∗ ∈ Rn, and x∗ be a non-degenerate local minimizer of f , that

is, ∇f(x∗) = 0 and H(x∗) is positive definite. Then the Basic Newton method,

starting close enough to x∗, converges to x∗ quadratically.

Theorem 2.2. Let f be a strictly convex twice continuously differentiable

function with the Hessian matrix satisfying the condition:

m‖y‖2 ≤ (H(x)y, y) ≤ M‖y‖2, M > m > 0,

for each x, y ∈ Rn. If αk are chosen with accordance with (ii) or (iii), then

xk → x∗ for each x0 and

‖xN+l − x∗‖ ≤ CλN . . . λN+l

for some N, C > 0. λN+l < 1 and liml→∞ λN+l = 0.
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3. Self-concordant functions

Let f be a three times continuously differentiable convex function defined

on an open convex set Q, and ϕx,h(t) = f(x+ th), x ∈ Q, h ∈ Rn, t ∈ R. We say

that f is a self-concordant function if

1. |ϕ′′′
x,h(0)| ≤ 2(ϕ

′′
x,h(0))3/2, for each x ∈ Q, h ∈ Rn.

2. If a sequence {xk} ⊂ Q converges to a boundary point of Q then

f(xk) →∞.

The second condition is irrelevant if Q = Rn

Examples

1. The convex quadratic function f(x) = 1
2
(x,Ax) + (b, x) + c (A is a

symmetric positive semi-definite n× n matrix) is self-concordant on Rn;

2. Function − ln(x) is self-concordant on Q = {x ∈ R : x > 0}.
3. Let Q = {x ∈ Rn : gi(x) < 0, i = 1, 2, . . . ,m}, where gi(x) are linear

or strict convex quadratic functions. Then

f(x) = −
m∑

i=1

ln(−gi(x))

is self-concordant on Q.

Theorem 3.1. Let f be a strictly convex self-concordant below bounded

function on Q. Suppose αk in the Newton method is chosen as

αk =
1

1 + λk

,

where

λk =
√

(∇f(xk), H−1(xk)∇f(xk)).

Then the Newton method has the following properties for each initial point

x0 ∈ Q:

1. xk ∈ Q, for each k;

2. {xk} converges to the unique minimizer x∗ of f on Q;

3. the number of steps required to get an x such that f(x)− f(x∗) < ε for

ε < 0.1 is no more than

N(ε) = A(f(x0)− f(x∗) + ln ln 1/ε),

where A is an absolute constant.

3


