Convex functions

Let C be a convex set in \mathbb{R}^n . A function f on C is a convex function if $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$ for each $x \in \mathbb{C}$, $y \in \mathbb{C}$ and $0 < \lambda < 1$.

If $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ for each $x \in C$, $y \in C$ and $0 < \lambda < 1$, then f is called a *strictly convex function* on C.

A function g is called a concave function if -g is a convex function.

Let f be a function on S in \mathbb{R}^n . The set

$$\{(x,\mu)\in R^{n+1}:\ x\in S,\ \mu\in R^1,\ \mu\geq f(x)\}$$

is called the epigraph of f and is denoted by epi(f).

Properties

- 1. A function f is a convex function iff epi(f) is a convex set.
- 2. For any convex function f and any $\alpha \in R^1$, the level sets $\{x: f(x) < \alpha\}$ and $\{x: f(x) \le \alpha\}$ are convex.
- 3. Let f_{α} , $\alpha \in A$ be a set of convex functions. Then $f(x) = \sup_{\alpha \in A} f_{\alpha}(x)$ is a convex function.
- 4. Let $f_1, \ldots f_m$ are convex functions on C and $\lambda_1 \geq 0, \ldots \lambda_m \geq 0$. Then $f = \sum_{i=1}^m \lambda_i f_i$ is a convex function on C.
- 5. Any local minimum of a convex function on a convex set is the global minimum.
 - 6. Any convex function on a convex set C is continuous on Int(C).
- 7. Let f be a differentiable function on an open convex set C. Then f is convex iff

$$f(x) - f(x_0) \ge (\nabla f(x_0), x - x_0)$$

for any $x_0 \in C$, $x \in C$, and f is strictly convex iff

$$f(x) - f(x_0) > (\nabla f(x_0), x - x_0),$$

for any $x_0 \in C$, $x \in C$, $x_0 \neq x$.

8. Let f be a twice continuously differentiable function on an open convex set C. Then f is convex on C iff its Hessian matrix is positive semi-definite for every $x \in C$, and f is strictly convex on C iff its Hessian matrix is positive definite for every $x \in C$.

(The Hessian matrix is
$$H(x) = (h_{ij}(x))$$
, where $h_{ij}(x) = \frac{\partial^2 f}{\partial \xi_i \partial \xi_j}(x)$).

1