Decomposition rank of UHF-absorbing C*-algebras

Joint work with Hiroki Matui

12, Mar., 2013. Sde Boker
Murray-von Neumann equivalence

\(\mathcal{M} \): a finite von Neumann algebra,
\(p, q \): two projections in \(\mathcal{M} \).

If \(\tau(p) = \tau(q) \), for any tracial state \(\tau \) of \(\mathcal{M} \),
then there exists \(v \in \mathcal{M} \) such that

\[
 v^*v = p, \quad vv^* = q.
\]

This condition plays an essential role in the classification theorem of injective factors.
Murray-von Neumann equivalence and AFD

A. Connes proved that any injective factor with a separable predual is approximately finite dimensional (AFD), by using his deep study of automorphisms. And he classified injective factors of type II and type III\(\lambda\), \(\lambda \neq 1\).
Murray-von Neumann equivalence and AFD

A. Connes proved that any injective factor with a separable predual is approximately finite dimensional (AFD), by using his deep study of automorphisms. And he classified injective factors of type II and type III_\lambda, \lambda \neq 1.

U. Haagerup gave an alternative proof (injectivity \Rightarrow AFD) without using automorphisms, and classified the injective factor of thpe III_1.
Murray-von Neumann equivalence and AFD

A. Connes proved that any injective factor with a separable predual is approximately finite dimensional (AFD), by using his deep study of automorphisms. And he classified injective factors of type II and type III, $\lambda \neq 1$.

U. Haagerup gave an alternative proof (injectivity \Rightarrow AFD) without using automorphisms, and classified the injective factor of type III_1.

S. Popa also gave another short proof by using excisions of amenable traces.

In Connes and Haagerup’s argument, they showed AFD by using a partial isometry ν which induces the Murray-von Neumann equivalence.
Murray-von Neumann equivalence for C*-algebras

Theorem (1980. Cuntz-Pedersen.)

Let A be a C*-algebra, p, q projections in A. If $\tau(p) = \tau(q)$ for any tracial state τ of A. Then $\exists v_i \in A, i = 1, 2, ..., N$, such that

$$\sum v_i^* v_i = p,$$ $$\sum v_i v_i^* = q.$$
Theorem (1980. Cuntz-Pedersen.)

Let A be a C^*-algebra, p, q projections in A. If $\tau(p) = \tau(q)$ for any tracial state τ of A. Then $\exists v_i \in A, i = 1, 2, \ldots, N$, such that

$$\sum v_i^* v_i = p, \quad \sum v_i v_i^* = q.$$

Lemma (2013. Matui-Sato)

Let A be a C^*-algebra with strict comparison for projections, p, q projections in A. If $\tau(p) = \tau(q)$ for any tracial state τ of A. Then $\exists v_i \in A \otimes M_n, i = 1, 2$, such that

$$\sum v_i^* v_i \approx_{4/n} p \otimes 1_n, \quad \sum v_i v_i^* \approx_{4/n} q \otimes 1_n.$$
Main theorem

Let A be a unital separable, simple, C^*-algebra with a unique tracial state. Then A is nuclear, with strict comparison, and is quasidiagonal $\iff \text{dr}(A) < \infty$, (in particular $\text{dr}(A) \leq 3$).
Main theorem

Theorem (2013. H. Matui - Y. Sato)

Let A be a unital separable, simple, C*-algebra with a unique tracial state. Then A is nuclear, with strict comparison, and is quasidiagonal if and only if $\text{dr}(A) < \infty$, (in particular $\text{dr}(A) \leq 3$).

- If A is in the above theorem, A has strict comparison if and only if $A \otimes \mathbb{Z} \cong A$.
Main theorem

Theorem (2013. H. Matui - Y. Sato)

Let A be a unital separable, simple, C*-algebra with a unique tracial state.
Then

A is nuclear, with strict comparison, and is quasidiagonal $\iff \text{dr}(A) < \infty$, (in particular $\text{dr}(A) \leq 3$).

- **If A is in the above theorem,**
 - A has strict comparison $\iff A \otimes \mathcal{Z} \cong A$.
- **A is quasidiagonal** $\iff A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$, D. Voiculescu.
Definition (2002. E. Kirchberg - W. Winter.)

Let A be a separable C^*-algebra. A has decomposition rank at most N, $\text{dr}(A) \leq N$, if

- $\exists \varphi_n : A \rightarrow \bigoplus_{i=0}^{N} M_{k_i,n} : \text{c.p.c},$
- $\exists \psi_{i,n} : M_{k_i,n} \rightarrow A : \text{order zero (disjointness preserving), c.p.c}$

such that

\[\sum \psi_{i,n} \text{ is also contractive,} \]

\[\|(\sum \psi_{i,n}) \circ \varphi_n(a) - a\| \rightarrow 0, \quad \forall a \in A, \]

where we simply write $\left(\sum \psi_{i,n} \right)(\bigoplus x_i) := \sum \psi_{i,n}(x_i)$.
Decomposition rank of UHF-absorbing C*-algebras

Decomposition rank

Let A be a separable C*-algebra. A has decomposition rank at most N, $\text{dr}(A) \leq N$, if

\[\exists \varphi_n : A \rightarrow \bigoplus_{i=0}^{N} M_{k_i,n} : \text{c.p.c}, \]

\[\exists \psi_{i,n} : M_{k_i,n} \rightarrow A : \text{order zero (disjointness preserving), c.p.c} \]

such that

\[\sum \psi_{i,n} \text{ is also contractive,} \]

\[\| (\sum \psi_{i,n}) \circ \varphi_n(a) - a \| \rightarrow 0, \quad \forall a \in A, \]

where we simply write $(\sum \psi_{i,n})(\bigoplus x_i) := \sum \psi_{i,n}(x_i)$.

- $\text{dr}(A) < \infty \implies A$ is quasidiagonal, Kirchberg-Winter.
Decomposition rank of UHF-absorbing C*-algebras

Decomposition rank

Definition (2002. E. Kirchberg - W. Winter.)

Let A be a separable C*-algebra. A has decomposition rank at most N, $\text{dr}(A) \leq N$, if

\[
\exists \varphi_n : A \to \bigoplus_{i=0}^{N} M_{k_i,n} : \text{c.p.c},
\]

\[
\exists \psi_{i,n} : M_{k_i,n} \to A : \text{order zero (disjointness preserving), c.p.c}
\]

such that

\[
\sum \psi_{i,n} \text{ is also contractive},
\]

\[
\| (\sum \psi_{i,n}) \circ \varphi_n(a) - a \| \to 0, \quad \forall a \in A,
\]

where we simply write $(\sum \psi_{i,n})(\bigoplus x_i) := \sum \psi_{i,n}(x_i)$.

- $\text{dr}(A) < \infty \implies A$ is quasidiagonal, Kirchberg-Winter.
- $\text{dr}(A) < \infty \implies A \otimes \mathcal{Z} \cong A$, 2007 Winter.
Decomposition rank of UHF-absorbing C*-algebras

Decomposition rank

Definition (2002. E. Kirchberg - W. Winter.)

Let A be a separable C*-algebra. A has decomposition rank at most N, $\text{dr}(A) \leq N$, if

1. $\exists \varphi_n : A \rightarrow \bigoplus_{i=0}^{N} M_{k_i,n} : \text{c.p.c}$,
2. $\exists \psi_{i,n} : M_{k_i,n} \rightarrow A : \text{order zero (disjointness preserving), c.p.c}$ such that

 $\sum \psi_{i,n}$ is also contractive,

 $\| (\sum \psi_{i,n}) \circ \varphi_n(a) - a \| \rightarrow 0, \quad \forall a \in A$,

where we simply write $(\sum \psi_{i,n})(\bigoplus x_i) := \sum \psi_{i,n}(x_i)$.

- $\text{dr}(A) < \infty \implies A$ is quasidiagonal, Kirchberg-Winter.
- $\text{dr}(A) < \infty \implies A \otimes \mathbb{Z} \cong A$, 2007 Winter.
- $A \otimes \mathbb{Z} \cong A \implies A$ has strict comparison, 2001 M. Rørdam.
Main theorem

Let A be a unital separable, simple, C^*-algebra with a unique tracial state. Then

- A is nuclear, with strict comparison, and is quasidiagonal $\iff \text{dr}(A) < \infty$, (in particular $\text{dr}(A) \leq 3$).

- If A is in the above theorem,
 - A has strict comparison $\iff A \otimes \mathcal{Z} \cong A$.
 - A is quasidiagonal $\iff A \hookrightarrow \prod M_{k_n}/\bigoplus M_{k_n}$, D. Voiculescu.
Toms - Winter conjecture

Conjecture (2009. A. Toms, W. Winter.)

Let A be a unital separable simple nuclear finite C^*-algebra with infinite-dimension. Then the following are equivalent.

1. $A \otimes \mathbb{Z} \cong A$.

(i) $A \otimes \mathbb{Z} \cong A$.

2. A has the strict comparison.

(iii) $\text{dr}(A) < \infty$

(i) \Rightarrow (ii) 2001. M. Rørdam.

(iii) \Rightarrow (i) 2009. W. Winter.

Corollary of the main theorem

Suppose that A is a unital separable simple nuclear C^*-algebra. Assume that A is quasidiagonal and with a unique tracial state. Then (ii) \Rightarrow (iii).
Toms - Winter conjecture

Conjecture (2009. A. Toms, W. Winter.)

Let A be a unital separable simple nuclear finite C*-algebra with infinite-dimension. Then the following are equivalent.

(i) $A \otimes \mathbb{Z} \cong A$.
(ii) A has the strict comparison.

(i) \Rightarrow (ii) 2001. M. Rørdam.
Conjecture (2009. A. Toms, W. Winter.)

Let A be a unital separable simple nuclear finite C^*-algebra with infinite-dimension. Then the following are equivalent.

(i) $A \otimes \mathbb{Z} \cong A$.
(ii) A has the strict comparison.
(iii) $\operatorname{dr}(A) < \infty$

- (i)\Rightarrow (ii) 2001. M. Rørdam.
- (iii)\Rightarrow (i) 2009. W. Winter.

Corollary of the main theorem

Suppose that A is a unital separable simple nuclear C^*-algebra. Assume that A is quasidiagonal and with a unique tracial state. Then (ii)\iff (iii).
Without Q.D.

Here we assume that the T. W. conjecture has been completely proved without Q.D. For a unital separable simple nuclear C^*-algebra A it follows that $A \otimes \mathcal{Z}$ also absorbs \mathcal{Z} ((i) in the T. W. conjecture.).
Without Q.D.

Here we assume that the T. W. conjecture has been completely proved without Q.D.
For a unital separable simple nuclear \mathbb{C}^*-algebra A it follows that $A \otimes \mathcal{Z}$ also absorbs \mathcal{Z} ((i) in the T. W. conjecture.),

\[\Rightarrow \text{dr}(A \otimes \mathcal{Z}) < \infty \] ((iii) in T.W. conjecture).

\[\Rightarrow A \otimes \mathcal{Z} \text{ is quasidiagonal.} \]
Without Q.D.

Here we assume that the T. W. conjecture has been completely proved without Q.D.
For a unital separable simple nuclear C*-algebra A it follows that $A \otimes \mathcal{Z}$ also absorbs \mathcal{Z} ((i) in the T. W. conjecture.),

\[\Rightarrow \text{dr}(A \otimes \mathcal{Z}) < \infty \text{ ((iii) in T.W. conjecture).} \]

\[\Rightarrow A \otimes \mathcal{Z} \text{ is quasidiagonal.} \]

\[\Rightarrow A \text{ is quasidiagonal.} \]

\[\therefore \text{ stably-finite and nuclearity } \sim \text{ quasidiagonality.} \]
Without Q.D.

Here we assume that the T. W. conjecture has been completely proved without Q.D. For a unital separable simple nuclear C^*-algebra A it follows that $A \otimes \mathcal{Z}$ also absorbs \mathcal{Z} ((i) in the T. W. conjecture.),

$\implies \text{dr}(A \otimes \mathcal{Z}) < \infty$ ((iii) in T.W. conjecture).

$\implies A \otimes \mathcal{Z}$ is quasidiagonal.

$\implies A$ is quasidiagonal.

\therefore stably-finite and nuclearity \rightsquigarrow quasidiagonality.

Problem (in Blackadar-Kirchberg)

Is any stably-finite C^*-algebra quasidiagonal?
Main theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>(2013. H. Matui - Y. Sato)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let A be a unital separable, simple, C^*-algebra with a unique tracial state. Then A is nuclear, with strict comparison, and is quasidiagonal $\iff \text{dr}(A) < \infty$, (in particular $\text{dr}(A) \leq 3$).</td>
<td></td>
</tr>
</tbody>
</table>

- If A is in the above theorem, A has strict comparison $\iff A \otimes \mathcal{Z} \cong A$.
- A is quasidiagonal $\iff A \hookrightarrow \prod M_{k_n} / \bigoplus M_{k_n}$, D. Voiculescu.