
ON VC-DENSITY IN VC-MINIMAL THEORIES

VINCENT GUINGONA

Abstract. We show that any formula with two free variables in a
VC-minimal theory has VC-codensity at most two. Modifying the
argument slightly, we give a new proof of the fact that, in a VC-
minimal theory where acleq = dcleq, the VC-codensity of a formula
is at most the number of free variables (from [2,8]).

1. Introduction

There is a strong connection between the study of NIP theories from
model theory and the study of Vapnik-Chervonenkis dimension and
density from probability theory. Indeed, as first noted in [11], a theory
has NIP if and only if all definable families of sets have finite VC-
dimension. Moreover, a definable family of sets has finite VC-dimension
if and only if it has finite VC-density. Although VC-dimension provides
a reasonable measure of the “complexity” of a definable set system in an
NIP theory, it is highly susceptible to “local effects.” Indeed a theory
that is relatively “tame” globally but locally codes the power set of
a large finite set will have high VC-dimension. On the other hand,
VC-density is, in some respect, a much more natural measurement
of complexity, impervious to such local complexity. Moreover, it is
closely related to other measurements of complexity in NIP theories,
most notably, the dp-rank (see, for example, [2, 7, 10]).

In the pair of VC-density papers by M. Aschenbrenner, A. Dolich, D.
Haskell, D. Macpherson, and S. Starchenko [2, 3], significant progress
was made toward understanding VC-density in some NIP theories.
Bounds were given for VC-density in weakly o-minimal theories, strongly
minimal theories, the theory of the p-adics, the theory of algebraically
closed valued fields, and the theory of abelian groups. However, many
questions were left open. Perhaps the most interesting is the relation-
ship between dp-rank and VC-density.
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Open Question 1.1. In a theory T , is it true that a partial type π(y)
has dp-rank ≤ n if and only if every formula ϕ(x; y) has VC-density
≤ n with respect to π(y)?

A simpler question, implied by this and the subadditivity of the dp-
rank [10], is the following:

Open Question 1.2. If T is dp-minimal and ϕ(x; y) is any formula,
then does ϕ have VC-density ≤ |y|?

Both of these appear to be very difficult questions to answer. So,
we can ask an ostensibly easier question, replacing dp-minimality by
something stronger.

VC-minimality was first introduced by H. Adler in [1]. A theory
is VC-minimal if all definable families of sets in one dimension are
“generated” by a collection of definable sets with VC-codimension ≤
1. It turns out that all VC-minimal theories are indeed dp-minimal.
Moreover, due to the close relationship between VC-dimension and
VC-density, something can be said about VC-density in VC-minimal
theories, to some degree. However, the primary question on computing
VC-density in VC-minimal theories is still open.

Open Question 1.3. If T is VC-minimal and ϕ(x; y) is any formula,
then does ϕ have VC-density ≤ |y|?

In this paper, we provide partial solutions to this question. The
primary result is the following, which says this holds when |y| ≤ 2.

Theorem 1.4. If T is VC-minimal and ϕ(x; y) is any formula with
|y| ≤ 2, then ϕ has VC-density ≤ 2.

In particular, since the theory of algebraically closed valued fields is
VC-minimal, this provides a new result for this theory.

Although this theorem seems quite distant from answering Open
Question 1.3, the proof is unique, employing a combinatorial method
for dealing with directed systems, and may be of independent interest.
For example, we will discuss using the method to provide an entirely
new proof for the weakly o-minimal case in [2].

2. VC-Codensity and Directedness

2.1. VC-codensity. Fix T a complete first-order theory in a language
L with monster model U . If x is a tuple of variables, let |x| denote
the length of x and let Ux denote the set U |x| (more generally, if L is
multisorted, we let Ux be the elements in U of the same sort as x).
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If Φ(x; y) := {ϕi(x; y) : i ∈ I} is a set of formulas and B ⊆ Uy, let
SΦ(B) be the Φ-type space over B. That is, SΦ(B) is the set of all
maximal consistent subsets of

{ϕi(x; b)t : b ∈ B, i ∈ I, t < 2}.

Here we use the standard notation θ(x)1 = θ(x) and θ(x)0 = ¬θ(x)
for formulas θ(x). Moreover, if P is an expression that can either be
true or false, then we will denote θP = θ if P is true and θP = ¬θ if
P is false. For each p ∈ SΦ(B), there exists a unique s ∈ B×Φ2 (i.e.,
s : B × Φ→ {0, 1}) such that

p(x) = {ϕ(x; b)s(b,ϕ) : b ∈ B,ϕ ∈ Φ}.

Hence, |SΦ(B)| ≤ 2|B|·|Φ|. However, in interesting cases (i.e., when Φ
has NIP), there is a polynomial bound instead of an exponential one.
This leads to the following definition.

Definition 2.1 (VC-codensity). Given a finite set of formulas Φ(x; y)
and a real number `, we say that Φ has VC-codensity ≤ `, denoted
vc∗(Φ) ≤ `, if there exists K < ω such that, for all finite B ⊆ Uy,

|SΦ(B)| ≤ K · |B|`.

If no such number exists, say the VC-codensity is infinite (vc∗(Φ) =∞).

A set of formulas Φ(x; y) has VC-density ≤ ` if Φopp(y;x) := Φ(x; y)
has VC-codensity ≤ ` (when we exchange the parametrization). We
will only consider VC-codensity in this paper.

Consider the function πT : ω → R≥0 ∪ {∞}, that we call the VC-
codensity function, defined by

πT (n) := sup{vc∗(Φ) : Φ(x; y) is finite with |x| = n}.

Notice that πT (n) ≥ n. This is witnessed by the single formula

ϕ(x0, ..., xn−1; y) =
∨
i<n

xi = y.

As usual, if Φ = {ϕ} is a singleton, then Sϕ(B) = SΦ(B) and
vc∗(ϕ) = vc∗(Φ). By coding tricks, it suffices to assume that the Φ
in the definition of πT (n) are all singletons.

Lemma 2.2 (Sauer-Shelah Lemma). The following are equivalent for
a formula ϕ(x; y).

(1) ϕ has NIP,
(2) vc∗(ϕ) is finite.
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Even if a theory T has NIP, this does not guarantee that πT (n) is fi-
nite. Indeed we may have formulas ϕ(x; y) with |x| = 1 and have vc∗(ϕ)
arbitrarily large, even in the stable context. For example, countably
many independent equivalence relations.

On the other hand, many interesting theories T have some bound
on πT (n). For example, any weakly o-minimal theory T has πT (n) = n
for all n < ω (Theorem 6.1 of [2]). The theory of the p-adics T has
πT (n) ≤ 2n−1 (Theorem 1.2 of [2]). The theory of algebraically closed
valued fields T has πT (n) ≤ 2n (Corollary 6.3 of [2]).

The primary problem in the study of VC-codensity for theories is to
determine when we can bound πT (n). For example, what conditions
on T guarantee that πT (n) = n?

2.2. VC-minimaility. For a set X and a set system on X, C ⊆ P(X),
we say that C is directed if, for all A,B ∈ C, one of the following holds:

• A ⊆ B,
• B ⊆ A, or
• A ∩B = ∅.

Note that, if C is directed, then (C;⊇) is a forest (and, if X ∈ C, then
it is a tree with root X).

In general, we can convert from formulas to set systems. If θ(x) is a
formula (possibly with parameters), then let θ(U) := {a ∈ Ux :|= θ(a)}.
Suppose ∆ = {δi(x; yi) : i ∈ I} is a set of partitioned formulas (where
yi is allowed to vary but x is fixed and usually |x| = 1) and consider
the set system on Ux,

C∆ := {δi(U ; b) : i ∈ I, b ∈ Uyi}

Definition 2.3 (Directedness). We say ∆ is directed if C∆ is directed.
A formula δ(x; y) is directed if {δ(x; y)} is directed. An instance of ∆
is a formula of the form δi(x; b) for some i ∈ I and b ∈ Uyi .

Definition 2.4 (VC-minimality, [1]). A theory T is VC-minimal if
there exists a directed set of formulas ∆ with |x| = 1 such that all
formulas (with parameters) θ(x) are T -equivalent to a boolean combi-
nation of instances of ∆.

We will call the family ∆ the generating family and we will call in-
stances of ∆ balls. Throughout the remainder of this paper, we assume
T is a VC-minimal theory.

Definition 2.5 (Unpackable, [4]). A directed family ∆ is unpackable
if no instance of ∆ is T -equivalent to a disjunction of finitely many
proper instances.
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The following is a fundamental decomposition theorem for formulas
in VC-minimal theories.

Theorem 2.6 (Theorem 4.1 of [5]). For all formulas ϕ(x; y) (with
|x| = 1), there exists a directed formula δ(x; z), N < ω, and formulas
ψi(x; y) for i < 2N such that

• for all b ∈ Uy, there exists n ≤ N and ci, ..., cn−1 ∈ Uz, ψi(x; b)
is T -equivalent to

∨
i<n δ(x; ci), and

• for all b ∈ Uy, ϕ(x; b) is T -equivalent to∧
i<N

ψ2i(x; b) ∧ ¬ψ2i+1(x; b).

Remark 2.7 (Finite VC-minimality and u-balls). Throughout this pa-
per, we will only be working with local properties of a VC-minimal
theory (i.e., computing VC-codensity). In light of Theorem 2.6, we
may assume that the generating family ∆ is a singleton, {δ}. More-
over, we may assume that, for the formula ϕ(x; y) considered, there
exists N < ω such that, for all b ∈ Uy, ϕ(x; b) is T -equivalent to a
disjunction of at most N instances δ. In [4], these are called u-balls.

Remark 2.8 (VC-minimality when acl = dcl). If acleq = dcleq in T ,
then we may actually assume that all formulas are balls. For example,
suppose ϕ(x; y) is a formula and N < ω are such that, for all b ∈ Uy,
there exists n ≤ N , c0, ..., cn−1 ∈ Uz such that,

|= (∀x)

(
ϕ(x; b)↔

∨
i<n

δ(x; ci)

)
.

Then, in particular, ci/δ ∈ acleq(b), hence ci/δ ∈ dcleq(b). Thus, there
exist formulas δi(x; y) for i < N such that

• {δi(x; y) : i < N} is directed, and
• ϕ(x; y) is T -equivalent to

∨
i<n δi(x; y).

For more details, see Section 3 below.

Now for any set C ⊆ Uz and any directed set ∆(x; z), there is a
quasi-forest structure on C ×∆. Namely,

〈c0, δ0〉E 〈c1, δ1〉 if |= (∀x)(δ1(x; c1)→ δ0(x; c0)).

This is a quasi-forest instead of a true forest because we could have that
δ0(x; c0) and δ1(x; c1) are unequal but T -equivalent. Let F(C,∆) :=
(C×∆;E) denote this quasi-forest. We can expand C×∆ by a “root,”
call it 0, and set 0E 〈c, δ〉 for all c ∈ C (and 〈c, δ〉E 0 if |= (∀x)δ(x; c)).
Then, T (C,∆) := (C ×∆ ∪ {0};E) is a quasi-tree.
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Remark 2.9. Suppose C and ∆ are finite. Each type in the ∆-type
space S∆(C) corresponds to a node in the quasi-tree T (C,∆) (and, if
∆ is unpackable, this is a bijective correspondence). To see this, for
each c ∈ C and δ ∈ ∆, consider the generic ∆-type corresponding to
the (interior) of the ball δ(x; c), namely

νc,δ(x) :=
{
δ′(x; c′)|=(∀x)(δ(x;c)→δ′(x;c′)) : c′ ∈ C, δ′ ∈ ∆

}
and let ν0(x) = {¬δ′(x; c′) : c′ ∈ C, δ′ ∈ ∆}, the generic type of the
root (needed if no ball is the whole space yet balls do not cover the
whole space). Define the virtual type space

V∆(C) := {νc,δ(x) : c ∈ C, δ ∈ ∆} ∪ {ν0}.

By the directedness of ∆, it is not hard to see that S∆(C) ⊆ V∆(C).
Note, however, that if ∆ is packable, then this may be a proper inclu-
sion. If a ball is the union of proper subballs, then the generic type
corresponding to this ball is inconsistent. This is why we refer to these
as virtual types.

It is necessary to consider only finite C and ∆. For example, in the
theory of dense linear orders, if C = Q and ∆ = {x < y}, then S∆(C)
has size 2ℵ0 . On the other hand, as defined, clearly V∆(C) is countable.
Indeed, V∆(C) misses all non-proper cuts.

In particular we get that, for finite C and finite ∆,

|S∆(C)| ≤ |∆| · |C|+ 1.

Thus, for a VC-minimal theory T ,

πT (1) = 1.

This leads to the primary open question regarding VC-minimal the-
ories (and VC-codensity), a restatement of Open Question 1.3 in this
terminology.

Open Question 2.10 (VC-codensity in VC-minimal theories). Is it
true that, in all VC-minimal theories T , for all n < ω, πT (n) = n?

For example, the theory of algebraically closed valued fields (ACVF)
is VC-minimal. Therefore, answering this question would improve the
bound given in [2]. In this paper, we give several partial results to this
question. In particular, we get a new result for ACVF.

In the next subsection, in light of Remark 2.9, we will be working
with quasi-forests F , keeping in mind that these quasi-forests will cor-
respond to ∆-types spaces, hence aid us in computing the VC-codensity
of formulas in T .
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2.3. Quasi-forests. Let (F ;E) be a finite quasi-forest. For each t ∈
F , define ν(t) = {s ∈ F : s E t}. In the model theory context, if we
think of t as the parameter, then ν(t) is the generic type corresponding
to t. Then we can create the “tree of types,” namely

V(F,E) := {ν(t) : t ∈ F} ∪ {∅}
ordered via inclusion (i.e., for p, q ∈ V(F,E), p E q if p ⊆ q). Then,
it is easy to see that V(F,E) \ {∅} is isomorphic to the partial order
generated by (F,E) via the map ν. Moreover, for p, q ∈ V(F,E),
(p ∩ q) ∈ V(F,E) is the tree-theoretic meet of p and q.

From an arbitrary linear ordering ≤∗ on each level of V(F,E), we
construct a linear ordering on V(F,E), ≤ extending the tree order as
follows:

• If p ⊂ q, then p < q.
• If p and q are ⊆-incomparable, let p∗ be such that (p ∩ q) ⊂
p∗ ⊆ p and p∗ minimal such and similarly define q∗. Then p < q
if p∗ <∗ q∗.

Note that in the case where (F ;E) = F(C,∆) for a directed set of
formulas ∆(x; z) and C ⊆ Uz as above, the ordering ≤ we get here
corresponds to the “convex ordering” (see [6,8]). That is, the instances
of δ are convex in this ordering. Formally:

Lemma 2.11. For all t ∈ F , the set χ(t) := {p ∈ V(F,E) : t ∈ p} is
≤-convex.

Proof. Suppose t ∈ F and p < r < q with p, q ∈ χ(t). In particular,
t ∈ (p∩ q). If (p∩ q) ⊆ r, then t ∈ r so r ∈ χ(t). So suppose this fails.
If r ⊂ (p ∩ q), then in particular r ⊂ p, hence r < p, a contradiction.
Thus r and (p∩q) are ⊆-incomparable. Thus (r∩q) = (r∩p) ⊂ (p∩q).
Hence, by the second part of the definition of ordering, either r < p, q
or p, q < r (depending on ≤∗). Contradiction. �

For each p, q ∈ V(F,E), define

diff(p, q) := (p4q) and dist(p, q) := |diff(p, q)|.

Lemma 2.12. For any sequence p0 < ... < pm from V(F,E),∑
i<m

dist(pi, pi+1) ≤ 2|F |.

Proof. For any t ∈ F , for all i < m, t ∈ diff(pi, pi+1) = (pi4pi+1) if
and only if

• pi ∈ χ(t) and pi+1 /∈ χ(t), or
• pi /∈ χ(t) and pi+1 ∈ χ(t).
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By Lemma 2.11, χ(t) is ≤-convex, so, for each t ∈ F , there exists at
most two i < m such that t ∈ diff(pi, pi+1). The conclusion follows. �

2.4. The quasi-forest F(C,∆). Fix ∆(x; z) a finite directed set, C ⊆
Uz finite, and consider F(C,∆) as defined above. Notice that V∆(C)
is isomorphic to V(F(C,∆)) via ν0 7→ ∅ and νc,δ(x) 7→ ν(〈c, δ〉). Thus,
for p, q ∈ V∆(C), we define

diff(p, q) := (p4q) and dist(p, q) := |diff(p, q)|.
Clearly this corresponds via our isomorphism to the definition above.
By Lemma 2.12, we get the following.

Lemma 2.13. There exists ≤ a linear order on V∆(C) such that, for
all p0 < ... < pm from V∆(C),∑

i<m

dist(pi, pi+1) ≤ 2|C||∆|.

This lemma is vital to our method of counting types in VC-minimal
theories, as we will demonstrate in the next section using the test case
of fully VC-minimal theories.

3. Test Case: Fully VC-Minimal Theories

Definition 3.1 (Definition 3.9 of [8]). A theory T is fully VC-minimal
if there exists a directed family of formulas ∆ with |x| = 1 such that, for
all formulas ϕ(x; y) with |x| = 1 and y arbitrary, ϕ(x; y) is T -equivalent
to a boolean combination of elements of ∆.

As noted in Remark 2.8 above, if T is VC-minimal and acleq = dcleq,
then T is fully VC-minimal. For example, any weakly o-minimal theory
is fully VC-minimal. On the other hand, ACVF and even ACF are not
fully VC-minimal. See Example 3.15 of [8] for details.

Theorem 3.2 (Theorem 3.14 of [8]). If T is fully VC-minimal, then
πT (n) = n for all n < ω. That is, for all formulas ϕ(x; y), the VC-
codensity of ϕ is ≤ |x|.

The proof presented in [8] goes through UDTFS-rank, similar to the
proof for weakly o-minimal theories given in [2], but in this section,
we will sketch an alternate proof using “pure combinatorics.” We use
this to motivate the process by which we compute the VC-codensity of
some formulas in general VC-minimal theories.

We prove Theorem 3.2 by induction on n. If n = 1, fix ϕ(x; y) with
|x| = 1. Fix a finite directed ∆(x; y) such that ϕ(x; y) is a boolean
combination of elements of ∆. Then, for any finite B ⊆ Uy,

|Sϕ(B)| ≤ |S∆(B)|.
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However, as argued above, |S∆(B)| ≤ |∆| · |B| + 1, which is linear in
|B|. Hence, vc∗(ϕ) ≤ 1.

In general, fix n > 1 and consider ϕ(x0, x1; y), where |x0| = 1 and
|x1| = n− 1. Repartition ϕ via

ϕ̂(x0;x1, y) = ϕ(x0, x1; y)

and, as before, there exists a finite directed ∆0(x0;x1, y) such that ϕ̂ is
a boolean combination of elements of ∆0. Again, for any finite B ⊆ Uy
and any a1 ∈ Ux1 ,

|Sϕ̂(a1
_B)| ≤ |S∆0(a1

_B)| ≤ |∆0| · |B|+ 1.

But how do we use this to count ϕ-types over B instead of ϕ̂-types over
a1
_B? We describe the quasi-forest structure given by ∆0(x0; a1, B).
For each δ(x0;x1, y), δ′(x0;x1, y) ∈ ∆0, let

ψδ,δ′(x1; y, y′) := ∀x0 (δ′(x0;x1, y
′)→ δ(x0;x1, y)) .

Notice that, for all a1 ∈ Ux1 , for all b, b′ ∈ B, and for all δ, δ′ ∈ ∆0,

|= ψδ,δ′(a1; b, b′) if and only if 〈a1, b, δ〉E 〈a1, b
′, δ′〉,

with the quasi-forest structure F(a1
_B,∆0) described in Remark 2.9.

Lemma 3.3 (Quasi-forests determined by Ψ-types). If p(x1) ∈ SΨ(B×
B), a1, a

′
1 |= p, then, as quasi-forests,

F(a1
_B,∆0) ∼= F(a′1

_B,∆0)

via the map 〈a1, b, δ〉 7→ 〈a′1, b, δ〉.

Proof. For all b, b′ ∈ B, δ, δ′ ∈ ∆0,

〈a1, b, δ〉E 〈a1, b
′, δ′〉 if and only if p(x1) ` ψδ,δ′(x1, b, b

′).

Since the same holds for a′1, we get 〈a1, b, δ〉E 〈a1, b
′, δ′〉 if and only if

〈a′1, b, δ〉E 〈a′1, b′, δ′〉. �

In particular, for any such p, we can define the quasi-forest

F(p,B,∆0) = (B ×∆0;Ep),

where, for all b, b′ ∈ B, δ, δ′ ∈ ∆0,

〈b, δ〉Ep 〈b′, δ′〉 if p(x1) ` ψδ,δ′(x1; b, b′).

In particular, for all a1 |= p,

F(a1
_B,∆0) ∼= F(p,B,∆0)

via the map 〈a1, b, δ〉 7→ 〈b, δ〉. Similar to the definition of νc,δ as in
Remark 2.9 above, for 〈b, δ〉 ∈ F(p,B,∆0), define

νp,b,δ(x0;x1) := {δ′(x0;x1, b
′)〈b
′,δ′〉Ep〈b,δ〉 : b′ ∈ B, δ′ ∈ ∆0}.
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That is, δ′(x0;x1, b
′) ∈ νp,b,δ if and only if

p(x1) ` (∀x0)(δ(x0;x1, b)→ δ′(x0;x1, b
′)).

To deal with the 0 node, define

ν0(x0;x1) := {¬δ′(x0;x1, b
′) : b′ ∈ B, δ′ ∈ ∆0}.

Moreover, as we did in Remark 2.9, define the virtual type space

V∆0(p,B) := {νp,b,δ : 〈b, δ〉 ∈ F(p,B,∆0)} ∪ {ν0}.
In particular, if a1 |= p, then

νb,δ(x0) = νp,b,δ(x0; a1)

and
V∆0(a1

_B)(x0) = V∆0(p,B)(x0; a1).

Therefore, we get the following lemma.

Lemma 3.4 (∆0-types determined by Ψ-types). If p(x1) ∈ SΨ(B×B)
and a1 |= p, then

S∆0(a1
_B) ⊆ V∆0(p,B)(x0; a1).

In particular,

Sϕ(B) ⊆
⋃

p∈SΨ(B×B)

V∆0(p,B).

Hence, without any more work, we get the bound

|Sϕ(B)| ≤ (|∆0| · |B|+ 1)|SΨ(B ×B)|.
With no further analysis, induction would yield πT (n) ≤ 2n − 1. For
simplicity, assume n = 2 and hence |x1| = 1. Now, by full VC-
minimality, there exists a finite directed ∆1(x1; y, y′) such that each
ψ(x1; y, y′) ∈ Ψ is a boolean combination of elements of ∆1. Therefore,

|Sϕ(B)| ≤ (|∆0| · |B|+ 1)|S∆1(B ×B)| ≤
(|∆0| · |B|+ 1) · (|∆1| · |B|2 + 1) = O(|B|3).

In other words, πT (2) ≤ 3. We can get πT (2) = 2 by paying closer
attention to our counting.

Apply Lemma 2.13 to B × B and ∆1. Let p0 < ... < pm enumerate
S∆1(B ×B) inside V∆1(B ×B), hence∑

i<m

dist(pi, pi+1) ≤ 2|B|2|∆1|.

For each δ1(x1; b, b′) ∈ diff(pi, pi+1), formulas of the form ψδ0,δ′0(x1; b, b′)
for δ0, δ

′
0 ∈ ∆0 are potentially changed between pi and pi+1. That is,

either
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• 〈b, δ0〉Epi 〈b′, δ′0〉 and 〈b, δ0〉 6E pi+1
〈b′, δ′0〉, or

• 〈b, δ0〉 6E pi〈b′, δ′0〉 and 〈b, δ0〉Epi+1
〈b′, δ′0〉.

Thus, for each δ1(x1; b, b′) ∈ diff(pi, pi+1), we get at most |∆0| new vir-
tual ∆0-types in the corresponding virtual ∆0-type space V∆0(pi+1, B),
namely νpi+1,b′,δ′0

(x0;x1) for all δ′0 ∈ ∆0 (whether or not it includes
δ0(x0;x1, b) for each δ0 ∈ ∆0). Therefore,

|V∆0(pi+1, B) \ V∆0(pi, B)| ≤ |∆0||diff(pi, pi+1)| = |∆0|dist(pi, pi+1).

Therefore,∣∣∣∣∣∣
⋃

p∈S∆1

V∆0(p,B)

∣∣∣∣∣∣ ≤ |V∆0(p0, B)|+
∑
i<m

|V∆0(pi+1, B) \ V∆0(pi, B)| ≤

|V∆0(p0, B)|+ |∆0|
∑
i<m

dist(pi, pi+1) ≤

|V∆0(p0, B)|+ 2|B|2|∆1||∆0| ≤
2|B|2|∆1||∆0|+ |B||∆0|+ 1.

In particular,

|Sϕ(B)| = O(|B|2).

Therefore, πT (2) = 2. The argument is similar for n > 2.

4. General VC-Minimal Theories

In the general case, by Theorem 2.6, we can assume that the formula
whose VC-codensity we are computing is such that each instance is T -
equivalent to a union of a uniformly bounded number of balls. However,
the problem comes in distinguishing these balls from one another since,
in general, they are not individually definable over the parameter used
in the instance considered. So we will need some way of determining
irreducible unions of balls and do this relative to a given type-space.

For the remainder of this section, we will give a proof of Theorem
1.4, following the outline sketched in Section 3. That is, if T is a
VC-minimal theory, then we will show that

πT (2) = 2.

4.1. Construction Setup. Fix T a VC-minimal theory and ϕ(x; y)
is a partitioned formula with |x| = 2. Repartition as

ϕ̂(x0;x1, y) := ϕ(x0, x1; y).

By Theorem 2.6, there existsN0 < ω, δ0(x0; z) directed, and Γ0(x0;x1, y)
a finite set of formulas such that
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• ϕ̂(x0;x1, y) is T -equivalent to a boolean combination of ele-
ments of Γ0, and
• each instance of a formula from Γ0 is T -equivalent to a union

of at most N0 instances of δ0.

Fix a finite B ⊆ Uy and we aim to count the size of Sϕ(B). As each
type in Sϕ(B) is implied by a type in SΓ0(B), we have

|Sϕ(B)| ≤ |SΓ0(B)|,

so we will count Γ0-types over B instead (correctly repartitioned). Each
Γ0-type is, in fact, determined by an instance of δ0, just not necessarily
definably over B. For each a1 ∈ Ux1 and each c ∈ Uz, define

νa1,c(x0;x1) :=
{
γ(x0;x1, b)

|=∀x0(δ0(x0;c)→γ(x0;a1,b)) : b ∈ B, γ ∈ Γ0

}
,

and let

V(a1, B) := {νa1,c(x0;x1) : c ∈ Uz} ∪ {ν0(x0;x1)},

where, as before,

ν0(x0;x1) := {¬γ(x0;x1, b) : b ∈ B, γ ∈ Γ0}.

Then, it is easy to check that

(1) SΓ0(B) ⊆
⋃
{V(a1, B) : a1 ∈ Ux1}.

Therefore, it suffices to bound this set. As we did in Section 3, we will
use types in the x1 variable to bound this. We code this now.

For each formula γ ∈ Γ0, each a1 ∈ Ux1 , and each b ∈ B, γ(x0; a1, b)
is T -equivalent to a union of at most N0 instances of δ0. If γ(x0, a1, b)
is T -equivalent to

∨
i<n δ0(x0; ci) for ci ∈ Uz with n ≤ N0 minimal

such, then we will call the δ0(x0; ci)’s components of γ(x0; a1, b). Note
that, by directedness and minimality of n, components are unique up
to permutation and T -equivalence.

With this in mind, for each n ≤ N0 and each γ ∈ Γ0, let

ψ′′γ,n(x1, y, z0, ..., zn−1) := ∀x0

(
γ(x0;x1, y)↔

∨
i<n

δ0(x0; zi)

)
and let

ψ′γ,n(x1, y) := (∃zi)i<n[ψ′′γ,n] ∧ ¬(∃zi)i<n−1[ψ′′γ,n−1].

Then, |= ψ′γ,n(a1, b) if and only if γ(x0; a1, b) has exactly n components.
The next step is to code the Γ0-types that correspond to the generic

type of some component of γ(x0; a1, b). For each m < ω, n ≤ N0, and
12



µ ⊆ m×Γ02, let

ψγ,n,m,µ(x1, y, w0, ..., wm−1) := ψ′γ,n(x1, y)∧

(∃zi)i<n
[
ψ′′γ,n(x1, y, z0, ..., zn−1)∧

∧
s∈m×Γ02

(∨
i<n

∧
j<m,γ′∈Γ0

[∀x0(δ0(x0; zi)→ γ′(x0;x1, wj))]
s(j,γ′)

)s∈µ]
.

We demonstrate how ψγ,n,m,µ codes the desired Γ0-type space. Fix
a1 ∈ Ux1 , b ∈ B, b0, ..., bm−1 ∈ B and, any of c0, ..., cn−1 ∈ Uz such
that {γ(x; ci) : i < n} is the set of components of γ(x0; a1, b). For each
i < n, let ν(i) ∈ m×Γ02 be given as follows:

[ν(i)](j, γ′) = 1 if and only if |= ∀x0(δ0(x0; ci)→ γ′(x0, a1, bj)).

Finally, let

µ = {ν(i) : i < n}.
Each ν(i) codes the generic Γ0-type of δ0(x0; ci) over a1

_{bj : i < m},
so µ codes the set of all such Γ0-types. We see that

|= ψγ,n,m,µ(a1, b, b0, ..., bm−1).

Moreover, both n ≤ N0 and µ ⊆ m×Γ02 are unique such. For each
m < ω, define

Ψm(x1; y, w0, ..., wm−1) := {ψγ,n,m,µ : γ ∈ Γ0, n ≤ N0, µ ∈ m×Γ02}

and let Ψ := Ψ2N0 (our choice to consider only m ≤ 2N0 will be made
clear shortly). By VC-minimality, there exists δ1(x1;u) directed and
N1 < ω such that every instance of Ψ is boolean combination of at
most N1 instances of δ1. Note that this also covers instances of Ψm for
m < 2N0 by repeating entries.

The goal now is to build a Ψ-type space over a set of sizeO(|B|2) such
that each type determines a virtual Γ0-type space, V(a1, B). Then, as
we did in Section 3, we use this to bound the size of Γ0-types over B.
To do this, we will need some definitions about how to relate various
Γ0-type spaces via Ψ.

Definition 4.1. Fix b ∈ B, γ ∈ Γ0, m < ω, c ∈ Bm, and p(x1) any
partial type. We say that p decides generic Γ0-types of γ(x0;x1, b) over
c if, for some n < ω and µ ⊆ m×Γ02,

p(x1) ` ψγ,n,m,µ(x1, b, c).

In this case, let µp,γ,b,c be the unique such µ, which will code the type
space. Also, let Np,γ,b,c := |µ|, which denotes the size of the type space.

13



Clearly if p(x1) implies a type in SΨm({〈b, c〉}), then p decides generic
Γ0-types of γ(x0;x1, b) over c. Moreover, if p decides generic Γ0-types
of γ(x0;x1, b) over c and c0 ⊆ c is any subsequence, then p decides
generic Γ0-types of γ(x0;x1, b) over c0 as well.

Note that Np,γ,b,c ≤ N0 for any choice of b, γ, c, and p that decides
generic Γ0-types of γ(x0;x1, b) over c. This is because, for the formula
ψγ,n,|c|,µ(x1; b, c) to even be consistent, we must have Np,γ,b,c = |µ| ≤
n ≤ N0.

Fix b, γ, c, and p such that p decides generic Γ0-types of γ(x0;x1, b)
over c and fix c0 ⊆ c. Let πp,γ,b,c,c0 : µp,γ,b,c → µp,γ,b,c0 be the projection
map. That is, if c = 〈ci : i < m〉 and c0 = 〈ci0 , ..., cik−1

〉 for i0 < ... <
ik−1 < n and s ∈ µp,γ,b,c, then

[πp,γ,b,c,c0(s)](j, γ′) = s(ij, γ
′).

In general, this map is surjective and, when Np,γ,b,c = Np,γ,b,c0 , it is
bijective. This leads us to the following definition.

Definition 4.2. Fix b ∈ B, γ ∈ Γ0, m,m′ < ω, c ∈ Bm, and c′ ∈ Bm′ ,
and p(x1) any partial type. If p decides generic Γ0-types of γ(x0;x1, b)
over c_c′, then we say that c and c′ generate the same irreducibles of
γ(x0;x1, b) with respect to p if

Np,γ,b,c = Np,γ,b,c_c′ = Np,γ,b,c′ .

If c and c′ generate the same irreducibles of γ(x0;x1, b) with respect
to p, then the map

ρp,γ,b,c,c′ := π−1
p,γ,b,c_c′,c ◦ πp,γ,b,c_c′,c′

is a canonical bijection between µp,γ,b,c and µp,γ,b,c′ . Thus, we can use
the information of Ψ-types over small parts of B and “glue” this in-
formation together via these bijections to get information about the
Γ0-type over all of B. We detail this construction now.

4.2. Primary Construction. We are now ready to begin the primary
construction. Fix b ∈ B, γ ∈ Γ0, and put < an arbitrary linear order
on B. Let β0 := B, and let S0 := SΨ1(b_β0). Note that, for each
p ∈ S0, p decides generic Γ0-types of γ(x0;x1, b) over b′ for all b′ ∈ B.
Therefore, for each p ∈ S0, the set

βp0 := {b′ ∈ β0 : Np,γ,b,b′ > 1}
is well-defined. These correspond to the elements b′ such that, ac-
cording to p, there is more than one Γ0-type over b′ generic to some
component of γ(x0;x1, b). This inherits the order < from β0 = B. Let

βp,1 := {〈b′, b′′〉 : b′, b′′ ∈ βp0 , b′ < b′′ are <-consecutive},
14



which inherits a linear order < from βp0 . Let

β1 :=
(⋃
{βp,1 : p ∈ S0}

)
∪ {〈b′, b′〉 : b′ ∈ β0}.

Finally, let

S1 := SΨ2(b_β1).

By including a copy of the diagonal of β0 in β1, we ensure that, for
each q ∈ S1, there exists p ∈ S0 such that q(x1) ` p(x1).

In general, suppose that we have q ∈ Sn for n ≥ 1. By induction,
there exists p ∈ Sn−1 such that q ` p. Supposing βp,n is defined with a
linear order <, let

βqp,n := {c ∈ βp,n : Nq,γ,b,c > Nq,γ,b,c0 or Nq,γ,b,c > Nq,γ,b,c1},

where c0 is the first half of c and c1 is the second half of c. That is, c0

and c1 do not generate the same irreducibles of γ(x0;x1, b) with respect
to q. We endow βqp,n with the order from βp,n. Define

βq,n+1 := {c_c′ : c, c′ ∈ βqp,n, c < c′ are <-consecutive},

which inherits the obvious order < from βqp,n. Let

βn+1 :=
(⋃
{βq,n+1 : q ∈ Sn}

)
∪ {c_c : c ∈ βn}

and let

Sn+1 := SΨ2n+1 (b_βn+1).

Notice that, as we included a copy of the diagonal of βn in βn+1, for
each q ∈ Sn+1, there exists p ∈ Sn such that q ` p.

This all depends on b ∈ B and γ ∈ Γ0, so define βγ,b := βN0 (Lemma
4.3 below explains why we choose to stop at n = N0). Let

β :=
⋃
{b_βγ,b : γ ∈ Γ0, b ∈ B},

and let S := SΨ(β).
This concludes our construction. We need only show that this works.

4.3. Verifying Construction Works. First, its clear that S is the
set of Ψ-types over β ⊆ B2N0+1. We thus need to check that |β| =
O(|B|2) and, for each p(x1) ∈ S, for all a1, a

′
1 |= p, V(a1, B) = V(a′1, B).

Moreover, we then need to check that this implies that |Sϕ(B)| =
O(|B|2), as desired.

For the next two lemmas, fix b ∈ B and γ ∈ Γ0.

Lemma 4.3. The construction terminates by stage n = N0. That is,
for all q ∈ SN0, βqp,N0

= ∅ (where p ∈ SN0−1 is such that q ` p).
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Proof. If any q decides generic Γ0-types of γ(x0;x1, b) over c, then
Nq,γ,b,c ≤ N0. Since each iteration of the construction increases the
value of this Nq,γ,b,c by at least one, it cannot continue past N0 steps.

�

Lemma 4.4. For all p ∈ SN0, p decides generic Γ0-types of γ(x0;x1, b)
over B.

Proof. We must show that, for each p ∈ SN0 , there exists n < ω and
µ ⊆ B×Γ02 so that

p(x1) ` ψγ,n,|B|,µ(x1, b, B).

We do this by tracing through B using the formulas in p.
Fix n ≤ N0 and p0, ..., pn = p with pi ∈ Si and pi+1 ` pi. For

simplicity of notation, let β∗i = βpipi−1,i
for i ≤ n. Furthermore, choose n

such that β∗n = ∅ and β∗n−1 6= ∅. By Lemma 4.3, such an n ≤ N0 exists.
Choose c∗ ∈ β∗n−1 to be <-minimal. Clearly p decides generic Γ0-types
of γ(x0;x1, b) over c∗, so let µ∗ = µp,γ,b,c∗ . From this we must build the
desired µ ⊆ B×Γ02. Choose s ∈ µ∗ (which codes a generic Γ0-type over
c∗ of some component of γ(x0;x1, b)).

Claim. There exists s∗ : B × Γ0 → 2 “extending” s. That is, for all
i < |c∗| and γ′ ∈ Γ0, s∗(c

∗
i , γ
′) = s(i, γ′).

Proof of Claim. Fix b′ ∈ B, γ′ ∈ Γ0. If b′ ∈ c∗, then s∗(b
′, γ′) = s(i, γ′),

where b′ is the ith element of c∗. If b′ /∈ βp0

0 , then Np,γ,b,b′ = 1, hence
there is a unique s′ ∈ µp,γ,b,b′ . Let s∗(b

′, γ′) = s′(0, γ′). Otherwise,
choose 0 < m < n maximal such that b′ ∈ c ∈ βm. Choose c′ ∈ β∗m
such that:

• if m = n− 1, c′ = c∗, and
• if m < n− 1, c′ ⊆ c′′ ∈ β∗m+1 and c′ is <-closest such to c.

Now, there exists a chain

c0 < ... < ck

of <-consecutive elements in β∗m with c0 = c or c0 = c′ and similarly for
ck. By the choice of c′, ci

_ci+1 ∈ βpm,m+1 yet ci
_ci+1 /∈ β∗m+1. Thereby,

Np,γ,b,ci = Np,γ,b,ci_ci+1
= Np,γ,b,ci+1

, so ci and ci+1 generate the same
irreducibles of γ(x0;x1, b) with respect to p. Hence,

ρp,γ,b,c0,c1 ◦ ... ◦ ρp,γ,b,ck−1,ck

is a bijection between µp,γ,b,c and µp,γ,b,c′ . Moreover, if m < n−1, there
is a surjection of µp,γ,b,c′′ onto µp,γ,b,c by composing the bijection with
πp,γ,b,c′′,c. By induction, this gives us a surjection from µ∗ onto µp,γ,b,c.
Let s′ be the image of s under this surjection and set s∗(b

′, γ′) = s′(i, γ′),
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where b′ is the ith element of c. This concludes the construction of
s∗. �

Finally, let µ = {s∗ : s ∈ µ∗}. It is straightforward to check that this
works. Thus, p decides generic Γ0-types of γ(x0;x1, b) over B. �

We immediately get the following corollary.

Corollary 4.5. For all p(x1) ∈ S, for all a1, a
′
1 |= p, V(a1, B) =

V(a′1, B).

Proof. By Lemma 4.4, for each b ∈ B and γ ∈ Γ0, there exists n < ω
and µb,γ ⊆ B×Γ02 such that

p(x1) ` ψγ,n,|B|,µb,γ (x1, b, B).

Therefore, |= ψγ,n,|B|,µb,γ (a1, b, B). Unraveling the definition, we obtain

V(a1, B) = {{¬γ′(x0;x1, b
′) : b′ ∈ B, γ′ ∈ Γ0}}∪

{{γ′(x0;x1, b
′)s(b

′,γ′) : b′ ∈ B, γ′ ∈ Γ0} : b ∈ B, γ ∈ Γ0, s ∈ µb,γ}.

Since this also holds for a′1, we get V(a1, B) = V(a′1, B). �

In light of this, for any p ∈ S, define V(p,B) = V(a1, B) for any
(equivalently all) a1 |= p.

Immediately from this corollary and (1) we get that

|Sϕ(B)| ≤ |SΓ0(B)| ≤ (N0 · |B| · |Γ0|+ 1) · |S|.

By VC-minimality, we know that |S| ≤ N1|β|+ 1, thus we obtain

|Sϕ(B)| = O(|B| · |β|).

A priori, there is no good bound on the size of β, so this is not imme-
diately helpful. However, using Lemma 2.13, we will obtain a bound
on the order of |B|2.

For the next two lemmas, fix b ∈ B and γ ∈ Γ0. For the next
lemma, consider n ≤ N0. For each ψ ∈ Ψ2n and c ∈ βn, there exists
Dψ,c ⊆ Uu with |Dψ,c| ≤ N1 so that ψ(x1; b, c) is T -equivalent to a
boolean combination of δ1(x1; d) for d ∈ Dψ,c. Let D :=

⋃
{Dψ,c : ψ ∈

Ψ2n , c ∈ βn}. Hence, for any q ∈ Sn, there exists p ∈ Sδ1(D) such that
p(x1) ` q(x1). We get the following:

Lemma 4.6. For all q0, q1 ∈ Sn and p0, p1 ∈ Sδ1(D) with p0 ` q0 and
p1 ` q1, we have

|βq1,n+1 \ βq0,n+1| ≤ 3n · dist(p0, p1).
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Proof. For t < 2, let qt = qt,n, ..., qt,0 be such that qt,i ∈ Si and qt,i+1 `
qt,i. Consider ψ ∈ Ψ2n and c ∈ βn. Then p0 and p1 both imply either
±ψ(x1; b, c), and they can disagree only if ±δ(x1; d) ∈ diff(p0, p1) for
some d ∈ Dψ,c. If they do disagree on ψ(x1; b, c), then, for some i ≤ n,
this changes at most one element in β

qt,i
qt,i−1,i

from t = 0 to t = 1. Such a
change results in a change of at most 3 elements in βqt,i,i+1 from t = 0

to t = 1 (if, for example, c0 < c < c1 are consecutive in β
q0,i
q0,i−1,i

and

c /∈ βq1,iq1,i−1,i
, then c0

_c1 ∈ βq1,i,i+1 whereas c0
_c, c_c1 ∈ βq0,i,i+1). By

induction, this causes at most 3n changes in βqt,n+1 from t = 0 to t = 1.
The conclusion follows. �

Define constants Kn recursively as follows: Let K0 = 1 and, if Kn is
given, let Kn+1 be such that

Kn+1 := 2Kn(1 + 3nN1|Ψ|).

Note that these are all independent of B. We can employ Lemma 4.6
and Lemma 2.13 to bound the size of βn uniformly in |B|.

Lemma 4.7. For all n ≤ N0, |βn| ≤ Kn · |B|.

Proof. We prove this by induction on n. For n = 0, β0 = B, hence
|β0| = |B|, as desired.

Suppose |βn| ≤ Kn · |B| and construct D for βn as above. In partic-
ular,

|D| ≤ N1 · |Ψ| ·Kn · |B|
and, for each type q ∈ Sn, there exists p ∈ Sδ1(D) such that p ` q.
Let q0, q1, ..., qm−1 ∈ Sn be an enumeration of Sn and, for each t < m,
choose pt ∈ Sδ1(D) such that pt ` qt. By Lemma 4.6,

|βqt+1,n+1 \ βqt,n+1| ≤ 3n · dist(pt, pt+1).

Moreover, by definition of βn+1, we get

βn+1 = βq0,n+1 ∪
⋃

t<m−1

(βqt+1,n+1 \ βqt,n+1) ∪ {c_c : c ∈ βn}.

By Lemma 2.13 on 〈pt : t < m〉 (reordering so that these form a
consecutive sequence), we get

|βn+1| ≤ |βq0,n+1|+ 3n · 2 · |D|+ |βn|.

Now |βq0,n+1| ≤ |βn| ≤ Kn · |B| by the induction hypothesis, so

|βn+1| ≤ 2 ·Kn · |B|+ 3n · 2 ·N1 · |Ψ| ·Kn · |B|

and |βn+1| ≤ Kn+1 · |B|. �
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Without any further work, we obtain the fact that |βγ,b| ≤ KN0|B|,
hence

|β| ≤ KN0 · |Γ0| · |B|2,
showing indeed that |β| = O(|B|2). A priori, this gives us the bound

|Sϕ(B)| = O(|B|3).

With another application of Lemma 2.13, we can get the desired result.
Let

K := 3N0N1KN0 · |Ψ| · |Γ0|.

Lemma 4.8. |Sϕ(B)| ≤ K|B|2.

Proof. As before, for each ψ ∈ Ψ and c ∈ β, let Dψ,c ⊆ Uu with |Dψ,c| ≤
N1 be such that, ψ(x1; c) is T -equivalent to a boolean combination of
δ1(x1; d) for d ∈ Dψ,c. Let D :=

⋃
{Dψ,c : ψ ∈ Ψ2N0 , c ∈ β}. As before,

|D| ≤ N1 · |Ψ| ·KN0 · |Γ0| · |B|2.
Again let q0, ..., qm−1 ∈ S enumerate S and, for each t < m, choose
pt ∈ Sδ1(D) such that pt ` qt.

Consider ψ ∈ Ψ and c ∈ β. If pt and pt+1 disagree on ψ(x1; c), we
must have ±δ1(x1; d) ∈ diff(pt, pt+1) for some d ∈ Dψ,c. Moreover,
one such disagreement yields a change of at most N0 elements between
V(qt, B) and V(qt+1, B), namely possibly changing the generic Γ0-types
corresponding to b and γ (when ψ(x1; c) = ψγ,n′,m′,µ(x1, b, c

′)). There-
fore,

|V(qt+1, B) \ V(qt, B)| ≤ N0 · dist(pt, pt+1).

Since

SΓ0(B) ⊆
⋃
t<m

V(qt, B),

Lemma 2.13 yields

|SΓ0(B)| ≤ |V(q0, B)|+N0(2 · |D|+ 2),

so

|SΓ0(B)| ≤ N0 · |Γ0| · |B|+ 1 + 2N0N1KN0 · |Ψ| · |Γ0| · |B|2.
Since |Sϕ(B)| ≤ |SΓ0(B)|, we get

|Sϕ(B)| ≤ K|B|2.
�

As K did not depend on our choice of B, we get |Sϕ(B)| = O(|B|2).
As ϕ(x; y) was arbitrary with |x| = 2, this shows that πT (2) = 2, which
concludes the proof of Theorem 1.4.
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4.4. Conclusion. Although it may be tempting to suppose that, using
induction with the above proof, we should be able to get πT (n) = n,
this does not work with the current framework. It is vital that both x0

and x1 be singletons in the above argument. The reason that induction
works in Section 3 is because ϕ-types correspond to generic types of
balls over the same set in question. To describe a ϕ(x; y)-type over B,
one needs only |x| elements from B. However, in the general argument

above, β ⊆ B2N0+1. In order to bound the size of β (e.g., in Lemma
4.7), we need to know a priori that x1 is a singleton. Still, it is the
hope of this author that some modification of this proof will provide a
positive answer to Open Question 1.3.
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