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Abstract. In this paper, we study VC-density over indiscernible
sequences (denoted VCind-density). We answer an open question
in [1], showing that VCind-density is always integer valued. We
also show that VCind-density and dp-rank coincide in the natural
way.

1. Introduction

In recent years, the examination of NIP (or dependent) theories has
been especially fruitful. NIP includes many theories of general mathe-
matical interest, such as o-minimal theories (including the theory of the
real numbers) and C-minimal theories (including algebraically-closed
valued fields). While there have been several remarkable successes, no
one has yet provided a decisively “correct” notion of super-dependence
in analogy with super-stability. However, one viable candidate notion
is that of strong-dependence addressed by Shelah in [13], [14], [15] and
[16]. Associated with the notion of strong-dependence is the notion of
dp-rank, one of the subjects of this article. In some sense, dp-rank is
indeed a measure of the complexity of families of definable sets relative
to a theory. In a recent paper of Kaplan, Onshuus, and Usvyatsov [8],
they show that dp-rank is subadditive in the way one would expect a
dimension to be (see Theorem 3.4 below, which is Theorem 4.8 of [8]).

Following a somewhat different line of investigation, Aschenbrenner,
Dolich, Haskell, MacPherson, and Starchenko in [1] suggest using VC-
density as a dimension for strongly-dependent theories. In fact, the
thesis of [1] holds that VC-density is, in some sense, a more “accurate”
measure of the complexity of a formula than the competitors, possibly
including dp-rank. We say “possibly,” for the relationship between
dp-rank and VC-density is not well understood. (It is known that VC-
density bounds dp-rank from above – see Proposition 1.4 below – but it
is not clear that VC-density also provides a lower bound for dp-rank.)
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This paper amounts to a first attempt to establish that relationship.
In order to make headway, we simplify the situation by analyzing VCind-
density – VC-density evaluated exclusively relative to indiscernible se-
quences – instead of the full VC-density. In this restricted context,
we answer several of the open questions around the relation between
dp-rank and VC-density. Along the way, we establish some additional
interesting results; for example, we show that VCind-density is always
integer-valued (Theorem 1.6 below).

The structure of this article is as follows. In the remainder of this
section, we provide most of the important definitions and state the
main results. In Section 2, we introduce a notion of “local” dp-rank,
and we show that it is, indeed, the “correct” localization of the standard
dp-rank. Though its theory is not deep in itself (or as relates to dp-
rank), the local dp-rank is rather interesting in its relation to VCind-
density. Indeed, in Section 3, we show that local dp-rank and VCind-
density coincide. We derive Theorems 1.6 and 1.7 as straightforward
corollaries. Finally, in Section 4, we briefly discuss how the techniques
employed in this paper to understand VCind-density might be applied
to the original questions surrounding VC-density.

1.1. VC-density and VCind-density. Let T be a complete first-
order theory in some language L and let C be a monster model for
T .

Let p(x) be a partial type and let ϕ(x; y) be any formula. For any set
B ⊆ Cy, let Sϕ(B) ∩ [p] denote the set of all ϕ-types over B consistent
with p(x). That is, all maximal subsets of

{ϕ(x; b) : b ∈ B} ∪ {¬ϕ(x; b) : b ∈ B}
consistent with p(x).

Definition 1.1. Fix ` ∈ R. We say that a formula ϕ(x; y) has VC-
density ≤ ` with respect to p if there exists K ∈ R such that, for all
finite B ⊆ Cy

|Sϕ(B) ∩ [p]| ≤ K · |B|`.
If p(x) is the partial type x = x, we drop “with respect to p.”

One interesting open question, originally posed in [1], is can we de-
termine the VC-density of formulas in many variables knowing the
VC-density of formulas in one variable?

Open Question 1.2. If there exists k < ω such that, for all ϕ(x; y)
with |x| = 1, the VC-density of ϕ(x; y) is ≤ k, then does there exists a
function f : ω → ω such that, for all ϕ(x; y), the VC-density of ϕ is
≤ f(|x|)?
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Another question is can we relate dp-rank and VC-density in a nat-
ural way?

Open Question 1.3. Fix n < ω. Is it true that p(x) has dp-rank
≤ n if and only if, for all formulas ϕ(x; y), ϕ has VC-density ≤ n with
respect to p?

In particular, is it true that T is dp-minimal if and only if the VC-
density of any formula ϕ(x; y) is ≤ |x|? One direction is clear, namely:

Proposition 1.4. Fix a partial type p(x) and n < ω. If, for all formu-
las ϕ(x; y), ϕ has VC-density ≤ n with respect to p, then p has dp-rank
≤ n.

This is a obvious generalization of the proof of Proposition 3.2 of
[3]. These open questions are difficult to answer in this general setting.
However, if we restrict ourselves to indiscernible sequences, we can
answer both of these questions.

Definition 1.5. Fix ` ∈ R. We say that a formula ϕ(x; y) has VCind-
density ≤ ` with respect to p if there exists K ∈ R such that, for all
finite indiscernible sequences b = 〈bi : i < N〉,

|Sϕ(B) ∩ [p]| ≤ K ·N `,

where B = {bi : i < N}.

In the remainder of this paper, we prove the following theorems.

Theorem 1.6. VCind-density is integer valued.

This answers an open question posed by Aschenbrenner, Dolich,
Haskell, MacPherson, and Starchenko in [1].

Theorem 1.7. For any n < ω, a partial type p(x) has dp-rank ≤ n if
and only if all formulas ϕ(x; y) have VCind-density ≤ n with respect to
p.

This answers Open Question 1.3 for VCind-density. As a corollary of
Theorem 1.7 and Theorem 4.8 of [8], we also answer Open Question
1.2 for VCind-density.

Corollary 1.8. Fix k < ω and suppose that, for all ϕ(x; y) with |x| =
1, the VCind-density of ϕ(x; y) is ≤ k. Then, for all ϕ(x; y), the VCind-
density of ϕ is ≤ k · |x|.
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2. Local dp-rank

In order to prove Theorem 1.6 and Theorem 1.7, we introduce a
notion of local dp-rank, which is just the obvious localization of dp-
rank. This will turn out to be exactly equal to VCind-density.

In this section, we borrow notation from Chapters 3 and 4 of [18].
Let (I;<) be a linear order and let compl(I) denote the completion
of I. For any C ⊆ compl(I), let ∼C be the equivalence relation on I
defined as follows. For i, j ∈ I, i ∼C j if and only if, for all c ∈ C, we
have that c ≤ i ⇔ c ≤ j and i ≤ c ⇔ j ≤ c. Notice that, for any C,
this is a convex equivalence relation on (I;<).

Definition 2.1. Fix a partial type p(x) and n < ω. We say that
p has dp-rank ≤ n if, for all a � p and all indiscernible sequences
b = 〈bi : i ∈ Q〉, there exists C ⊆ R with |C| ≤ n such that, for all
i, j ∈ Q with i ∼C j, tp(bi/a) = tp(bj/a).

This definition is equivalent to the standard definition of dp-rank
using ICT-patterns by Proposition 4.20 of [18], which is a simple gen-
eralization of of Lemma 1.4 of [17]. This is also equivalent to the
definition of dp-rank using mutually indiscernible sequences, as in [8].
We turn now to a localization of this definition.

Let p(x) be any partial type and let ϕ(x; y) be any formula.

Definition 2.2. For some n < ω, we say that the (local) dp-rank of ϕ
with respect to p is ≤ n if, for all a � p and all indiscernible sequences
b = 〈bi : i ∈ Q〉 in Cy, there exists C ⊆ R with |C| ≤ n such that,
i, j ∈ Q with i ∼C j, � ϕ(a; bi)↔ ϕ(a; bj).

This local dp-rank is the correct localization of dp-rank in the fol-
lowing sense.

Proposition 2.3. A partial type p(x) has dp-rank ≤ n if and only if,
for all formulas ϕ(x; y), ϕ has local dp-rank ≤ n with respect to p.

Proof. Suppose p has dp-rank ≤ n. Fix ϕ(x; y), a � p, and b = 〈bi :
i ∈ Q〉 indiscernible. By definition, there exists C ⊆ R with |C| ≤ n
so that, for all i, j ∈ Q with i ∼C j, tp(bi/a) = tp(bj/a). In particular,
� ϕ(a; bi)↔ ϕ(a; bj).

Suppose that, for all formulas ϕ(x; y), ϕ has local dp-rank ≤ n with
respect to p. Fix a � p, and b = 〈bi : i ∈ Q〉 indiscernible. Then, for
each ϕ(x; y), there exists a Cϕ ⊆ R with |Cϕ| ≤ n such that, i, j ∈ Q
with i ∼Cϕ j, � ϕ(a; bi) ↔ ϕ(a; bj). Suppose that Cϕ is minimal such,
and it is easy to see that such a set is unique. Let C =

⋃
ϕ(x;y)Cϕ.

Clearly, for all i, j ∈ Q with i ∼C j, we have tp(bi/a) = tp(bj/a).
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Therefore, it suffices to show that |C| ≤ n. By means of contradiction,
suppose |C| > n. In particular, there exists ϕ0(x; y), ..., ϕn(x; y) so that∣∣∣∣∣⋃

k≤n

Cϕk

∣∣∣∣∣ > n.

Let ψ(x; y1, y2) =
∨

k≤n[ϕk(x; y1) ↔ ¬ϕk(x; y2)]. There exists a subse-

quence b
′
of pairs of b, indexed by (n+1)×Z ordered lexicographically,

so that for k ≤ n and m ∈ Z, � ψ(a; b′k,m) if and only if m = 0. Using
compactness, this shows that ψ has local dp-rank > n with respect to
p, contrary to assumption. �

We say that a theory is strongly dependent if, for all partial types
p(x), the dp-rank of p is finite (see [15] or Section 4.3 of [18]). There
are theories that are dependent but not strongly dependent. However,
a formula ϕ(x; y) is dependent if and only if it has finite dp-rank with
respect to x = x. We use an example to illustrate this difference
between local and global definitions.

Example 2.4. Consider the language L = {Ei : i < ω} with countably
many binary relations and let T be the L-theory where each Ei is
an equivalence relation and the intersection of any number of classes
is infinite. Clearly this theory is dependent (in fact, stable), but it is
not strongly dependent. However, any formula has finite local dp-rank.
The issue is that there are formulas with arbitrarily large local dp-rank;
for example, consider

ϕn(x; y0, y1, ..., yn−1) =
∧
i<n

Ei(x; yi).

3. Local dp-rank and VCind-density coincide

Before we show that local dp-rank and VCind-density coincide, we
introduce another rank which is an indiscernible version of UDTFS-
rank (see, for example, [4], [5], or [1]). Fix p(x) a partial type and
ϕ(x; y) a formula. For some B ⊆ Cy, q(x) ∈ Sϕ(B) ∩ [p], and formula
ψ(y), we say that ψ defines q(x) if, for all b ∈ B, � ψ(b) if and only if
ϕ(x; b) ∈ q(x).

Definition 3.1. For n < ω, we say that ϕ has UDTFSind-rank ≤ n
with respect to p if there exists a finite set of formulas

Ψ = {ψr(y; z1,0, ..., z1,`, ..., zn,0, ..., zn,`, w1, ..., wk) : r < R}

such that, for all finite indiscernible sequences b = 〈bi : i < N〉, there
exists j1, ..., jk < N such that, for all q(x) ∈ Sϕ(b) ∩ [p], there exists
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i1, ..., in < N and r < R so that

ψr(y; bi1 , ..., bi1+`, ..., bin , ..., bin+`, bj1 , ..., bjk) defines q(x).

Lemma 3.2. If ϕ has UDTFSind-rank ≤ n with respect to p, then it
has VCind-density ≤ n with respect to p.

Proof. Under the hypothesis, a simple count reveals that |Sϕ(B)∩[p]| ≤
L · |B|n (where B = {bi : i < N}). �

We now show that local dp-rank, VCind-density, and UDTFSind-rank
coincide.

Theorem 3.3. For a formula ϕ(x; y), a partial type p(x), and n < ω,
the following are equivalent:

(1) ϕ has local dp-rank ≤ n with respect to p.
(2) ϕ has UDTFSind-rank ≤ n with respect to p.
(3) ϕ has VCind-density ≤ n with respect to p.
(4) ϕ has VCind-density ≤ ` with respect to p for some ` ∈ R with

n ≤ ` < n+ 1.

Proof. (1) ⇒ (2): Suppose ϕ has local dp-rank ≤ n with respect to p.

Claim. There exists ` < ω such that, for any finite indiscernible
sequence b = 〈bi : i < N〉 and all a � p, there exists i1 < ... < in < N
such that, for all k ≤ n and all j, j′ with ik + ` < j < j′ < ik+1,
� ϕ(a; bj)↔ ϕ(a; bj′) (for k = 0, n, let i0 + ` = −1 and in = N).

Proof of Claim. Suppose not. Then, for each ` < ω, we can find some
b = 〈bi : i < N〉 and a � p for which no such i1 < ... < in < N
exist. A simple compactness argument then shows that we can build
an indiscernible sequence b = 〈bi : i ∈ Q〉 and a � p which witnesses
the fact that ϕ has dp-rank > n with respect to p. �

From the claim it is easy to explicitly show ϕ has UDTFSind-rank
≤ n with respect to p. As in the proof of Theorem 1.2 (ii) of [4], there
exists finitely many formulas θs(y1, y2;w1, ..., wk) for s < S such that,
for any finite indiscernible sequence b, either b is a indiscernible set or
there exists j1, ..., jk and s < S so that θs(y1, y2; bj1 , ..., bjk) defines the

indiscernible ordering of b (i.e., 〈bi, bi′〉 holds of this formula if and only
if i < i′).

We need now a formula for each possible configuration of truth values
between a finite indiscernible sequence b and a � p. Consider the set

X = ({0} × {0, ..., n}) ∪ ({1, ..., n} × {0, ..., `})
and, for each f : X → {0, 1} and s < S, define the formula

ψf,s(y; z1,0, ..., z1,`, ..., zn,0, ..., zn,`, w1, ..., wk)
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which satisfies:

(i) If y = zi,j, then ψf,s holds iff. f(i, j) = 1,
(ii) If y falls in between zi,` and zi+1,0 via the ordering given by

θs(y1, y2;w1, ..., wk), then ψf,s holds iff. f(0, i) = 1.

These formulas take care of the case where we are dealing with an
indiscernible sequence that is not an indiscernible set. For the other
case, we define formulas ψ∗f (y; z1, ..., zn`) for each f : {0, 1, ..., n`} →
{0, 1} so that

(i) For i > 0, if y = zi, ψ
∗
f holds iff. f(i) = 1,

(ii) For y 6= zi for all i > 0, ψ∗f holds iff. f(0) = 1.

Now, for any finite indiscernible sequence b and a � p, let i1 < ... <
in < N be given as in the claim. If b is not an indiscernible set,
take j1, ..., jk < N and s < S so that θs(y1, y2; bj1 , ..., bjk) defines the
indiscernible ordering. Choosing the appropriate f : X → {0, 1} will
show us that

ψf,s(y; bi1 , ..., bi1+`, ..., bin , ..., bin+`, bj1 , ..., bjk) defines tpϕ(a/B),

as desired. In the case where b is an indiscernible set, we get a similar
result with ψ∗f .

(2) ⇒ (3): Follows immediately from Lemma 3.2.
(3) ⇒ (4): Trivial.
(4)⇒ (1): Suppose the local dp-rank of ϕ(x; y) is > n, witnessed by

a and 〈bi : i ∈ Q〉. Choose C ⊆ R minimal so that, for all i, j ∈ Q with
i ∼C j, � ϕ(a; bi)↔ ϕ(a; bj), so |C| > n. If C is infinite, ϕ(x; y) has IP
with respect to p, hence ϕ(x; y) has infinite VCind-density, so we may
assume C is finite. Therefore, there exists at least n + 2 infinite ∼C

classes, call them D0 < D1 < ... < Dn+1. For each consecutive pair D`

and D`+1, either the truth value of ϕ(a; bi) differs or there exists some
j` ∈ Q with D` < j` < D`+1 on which the truth value of ϕ(a; bj`) differs
from both. If the truth values on D` and D`+1 differ, choose j` ∈ D`+1

arbitrarily. Now fix N < ω and i = 〈i0, ..., in〉 an (n+ 1)-tuple from N
with i0 < ... < in and let BN = {bi : i = 0, 1, ..., N − 1}. Choose an
order-preserving map gi : N → Q so that

(i) gi(i`) = j`, and
(ii) If i`−1 < i < i`, then gi(i) ∈ D`.

Then consider the indiscernible subsequence 〈bg(i) : i < N〉 (for g = gi).
By indiscernibility, there exists ai � p so that, for all i = 0, ..., N − 1,

� ϕ(ai; bi)↔ ϕ(a; bg(i)).
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However, by the choice of D` and j`, each type tpϕ(ai/BN) is distinct

for different choices of i. Therefore,

|Sϕ(BN) ∩ [p]| ≥
(

N

n+ 1

)
,

which is on the order of Nn+1. Hence, the VCind-density of ϕ is ≥ n+1.
Therefore, for each ` < n + 1, VCind-density of ϕ is > `. This is what
we aimed to prove. �

Notice that Theorem 3.3 (3)⇔ (4) provides a proof of Theorem 1.6.
Moreover, Theorem 3.3 (1)⇔ (3) and Proposition 2.3 immediately give
a proof of Theorem 1.7. Consider the following theorem.

Theorem 3.4 (Theorem 4.8 of [8]). Suppose A is a set, a1, a2 are
tuples, and k1, k2 < ω. If tp(ai/A) has dp-rank ≤ ki for i = 1, 2, then
tp(a1, a2/A) has dp-rank ≤ k1 + k2.

This, coupled with Theorem 1.7 gives a proof of Corollary 1.8. As a
result of this corollary, we get the following.

Corollary 3.5. A theory T is dp-minimal if and only if all formulas
ϕ(x; y) have VCind-density ≤ |x|.

4. Future Directions

It is our hope that techniques developed in this paper for VCind-
density can me modified to answer the open questions about VC-
density.

The definition of UDTFSind-rank above differs drastically from the
original definition of UDTFS-rank given in [5] (related to the VCd
property in [1]). Fix a partial type p(x) and a formula ϕ(x; y). We
say that ϕ has UDTFS-rank ≤ n with respect to p(x) if there exists
finitely many formulas ψr(y; z1, ..., zn) for r < R such that, for every
finite B ⊆ Cy and q(x) ∈ Sϕ(B) ∩ [p], there exists b1, ..., bn ∈ B and
r < R such that

ψr(y; b1, ..., bn) defines q(x).

It is easy to show that the VC-density of ϕ with respect to p is bounded
by the UDTFS-rank of ϕ with respect to p (by a simple counting ar-
gument). Moreover, the following holds.

Proposition 4.1 (Theorem 3.13 of [5], Theorem 5.7 of [1]). If there ex-
ists k < ω such that, for all formulas ϕ(x; y) with |x| = 1, the UDTFS-
rank of ϕ is ≤ k, then, for all formulas ϕ(x; y), the UDTFS-rank of ϕ
is ≤ k · |x|.
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However, it is easy to show that VC-density and UDTFS-rank do
not coincide, so Proposition 4.1 cannot be directly applied to answer
Open Question 1.2. Can we find a new rank by modifying UDTFS-
rank to make it look similar to UDTFSind-rank such that the following
two conditions hold:

(i) this rank is subadditive as in Proposition 4.1, and
(ii) this rank bounds VC-density and vice versa?

If such a rank exists, this would settle Open Question 1.2. We cannot
hope for a (integer valued) rank that coincides exactly with VC-density,
since VC-densiy can be non-integer valued. For example, see Proposi-
tion 4.6 of [1].

Another interesting question arising from our investigation is that
of when VC-density and VCind-density coincide. It is very easy to see
that VCind-density is bounded by VC-density, but it is not at all clear
how one might use VCind-density to estimate or bound the general
VC-density. These two values certainly do not coincide in general, for
VCind-density is always integer-valued, while VC-density can take non-
integer values even in very simple scenarios. Quite recently, however,
Johnson (see Corollary 3.5 of [7]) has demonstrated a necessary and
sufficient condition for the VC-density and VCind-density of a given
formula to be equal.
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