Explicit Chabauty-Kim theory for the thrice punctured line

Ishai Dan-Cohen
joint work with Stefan Wewers

March 19, 2013
Let

\[X = \mathbb{P}^1 \setminus \{0, 1, \infty\} \].

For any ring (commutative with unit), the set \(X(R) \) of “\(R \)-valued points of \(X \)” is equal to the set

\[\{(x, y) \in R^* \times R^* \mid x + y = 1\} \]

of solutions to the unit equation in \(R \).

Let

\[S = \{q_1, \ldots, q_s\} \]

be a finite set of primes.
Siegel’s theorem tells us that $X(\mathbb{Z}[S^{-1}])$ is finite.

Baker’s method gives us bounds on the number of points, which are typically large.

But we’re still not very good at computing the sets $X(\mathbb{Z}[S^{-1}])$.
In 2005 Minhyong Kim began to develop a new approach to the study of integral points, inspired by Chabauty’s method. After fixing a prime

$$p \notin S,$$

Kim constructs a pair of towers of \mathbb{Q}_p-varieties and morphisms between them like so,

\[
\begin{array}{ccc}
\vdots & \downarrow & \vdots \\
\text{Sel}_{2,\mathbb{Q}_p} & \xrightarrow{h_2} & \text{Alb}_2 \\
\downarrow & & \downarrow \\
\text{Sel}_{1,\mathbb{Q}_p} & \xrightarrow{h_1} & \text{Alb}_1 \\
\end{array}
\]
and for each n, a commuting square like so.

\[
\begin{array}{ccc}
X(\mathbb{Z}[S^{-1}]) & \to & X(\mathbb{Z}_p) \\
\kappa \downarrow & & \downarrow \alpha \\
\text{Sel}_n(\mathbb{Q}_p) & \to & \text{Alb}_n(\mathbb{Q}_p) \\
\downarrow h & & \\
h_n & & \\
\end{array}
\]
We obtain a nested sequence of subsets of $X(\mathbb{Z}_p)$ containing $X(\mathbb{Z}[S^{-1}])$

$$X(\mathbb{Z}_p) \supset \alpha^{-1} h_1 \text{Sel}_1(\mathbb{Q}_p) \supset \alpha^{-1} h_2 \text{Sel}_2(\mathbb{Q}_p) \supset \cdots \supset X(\mathbb{Z}[S^{-1}]).$$

Kim conjectures that for n large, we have equality:

$$\alpha^{-1} h_n \text{Sel}_n(\mathbb{Q}_p) = X(\mathbb{Z}[S^{-1}]).$$

Wewers and I want to compute these subsets.

Our contribution so far concerns h_2.
Let H denote the group

$$
\begin{pmatrix}
1 & * & * \\
* & 1 & * \\
* & * & 1
\end{pmatrix}
$$

of upper triangular 3×3 matrices. We construct a diagram like so.

$$
\begin{align*}
X(\mathbb{Z}[S^{-1}]) \xrightarrow{\kappa} X(\mathbb{Z}_p) \\
\mathbb{Q}^S \times \mathbb{Q}^S \xrightarrow{h} H(\mathbb{Q}_p)
\end{align*}
$$

\[(*\)]
We define \(\kappa \) by

\[
\kappa(x, y) = (x_1, \ldots, x_s; y_1, \ldots, y_s)
\]

where

\[
\begin{align*}
x &= \pm q_1^{x_1} \cdots q_s^{x_s} \\
y &= \pm q_1^{y_1} \cdots q_s^{y_s}
\end{align*}
\]
We define α by

$$\alpha(x, y) = \begin{pmatrix} 1 & \log x & -\text{Li}_1 x \\ 0 & 1 & \log y \\ 0 & 0 & 1 \end{pmatrix}.$$

Here Li_1 denotes the p-adic dilogarithm.
To define h, Write

$$h = \begin{pmatrix} 1 & h_{1,2} & h_{1,3} \\ 1 & h_{2,3} & 1 \end{pmatrix}.$$

Then the first two components are linear, given by

$$h_{1,2}(x, y) = (\log q_1)x_1 + \cdots + (\log q_s)x_s$$
$$h_{2,3}(x, y) = (\log q_1)y_1 + \cdots + (\log q_s)y_s.$$
Now let $E = \mathbb{Q} \otimes \mathbb{Q}^*$ regarded as a \mathbb{Q} vector space, written multiplicatively. Then for each i, j, the generator $q_i \otimes q_j$ of $E \otimes E$ may be written in the form

$$q_i \otimes q_j = \prod_k ((u_k \otimes v_k)(v_k \otimes u_k))^{s_k} \cdot \prod_l (t_l \otimes (1 - t_l))^{d_l}.$$

Indeed, the quotient by elements of this form is Matsumoto’s presentation for K_2, and by Tate’s calculation, we have $K_2(\mathbb{Q}) \otimes \mathbb{Q} = 0$. Moreover, the proof amounts to a simple algorithm for producing such an expression. In terms of these decompositions, $h_{1,3}$ is bilinear given by

$$h_{1,3}(x, y) = \sum a_{i,j} x_i y_j$$

where

$$a_{i,j} = \sum_k s_k (\log u_k)(\log v_k) - \sum_l d_l (\text{Li} \ t_l).$$
Theorem (DC, Wewers). The diagram

\[
\begin{array}{ccc}
X(\mathbb{Z}[S^{-1}]) & \longrightarrow & X(\mathbb{Z}_p) \\
\downarrow \kappa & & \downarrow \alpha \\
\mathbb{Q}S \times \mathbb{Q}S & \underset{h}{\longrightarrow} & H(\mathbb{Q}_p)
\end{array}
\]

commutes.
Example

Let $S = \{2\}$. Then

$$h(x, y) = \begin{pmatrix} 1 & (\log 2)x & \frac{1}{2}(\log 2)^2 xy \\ 1 & 1 & (\log 2)y \\ 1 & 1 & 1 \end{pmatrix}$$

so its image satisfies the equation

$$XY = 2Z$$

which pulls back to

$$\log(x) \log(y) = -2 \text{Li}(x)$$

on $X(\mathbb{Z}_p)$.
Now set $p = 3$. Then computations based on the work of Besser–de Jeu show that the roots are precisely $\{-1, 1/2, 2\}$.

The same holds for $p = 5, 7$.

For $p = 11$ you get more roots,

and after that the number of roots seems to increase quickly.
Proof

The determination of $h_{1,2}, h_{2,3}$, is a direct calculation in (abelian) p-adic Hodge theory, and was previously known. We turn our attention to $h_{1,3}$.
The category of mixed Tate motives over \mathbb{Q} with \mathbb{Q}-coefficients unramified outside of S, is canonically

$$\text{Rep } B,$$

where

$$B = \mathbb{G}_m \ltimes U,$$

where U is a prounipotent \mathbb{Q}-group. Its coordinate ring

$$A = \text{regular functions on } U$$

has the structure of a graded Hopf algebra.
The p-adic de Rham realization of a mixed Tate motive has the structure of a mixed Tate filtered φ module.

The category of mixed Tate filtered φ modules has a similar structure;

we decorate with dR.
We construct a diagram like so.

\[X(\mathbb{Z}[S^{-1}]) \longrightarrow X(\mathbb{Z}_p) \]

\[\bar{\kappa} \downarrow \quad \bar{\alpha} \downarrow \]

\[A_2 \quad \rho \longrightarrow A_2^{dR} \quad \psi \longrightarrow \mathbb{Q}_p \]

\[\nu \downarrow \cong \downarrow \]

\[A_1 \otimes A_1 \]

\[\mathbb{Q}^S \otimes \mathbb{Q}^S \]
The theory of the unipotent fundamental group assigns to every point \((x, y) \in X(\mathbb{Z}[S^{-1}])\) a \(B\)-equivariant \(H\)-torsor. By the general theory of mixed Tate categories, such an object gives rise to an element \(\bar{\kappa}(x) \in A_2\).

A similar description applies to \(\bar{\alpha}\).

Commutativity of the square follows from Olsson’s unipotent \(p\)-adic Hodge theory.

As for \(\Psi\), let me just say vaguely that it comes from comparing the slope decomposition with the Hodge filtration.
Tate’s decomposition into elements of the form

\[u \otimes v + v \otimes u \] \hspace{1cm} (D)

and elements of the form

\[t \otimes (1 - t) \] \hspace{1cm} (G)

takes place in the lower left (after possibly enlarging \(S \)). Elements of type \(G \) ("geometric elements") come from \(X \), and explicit formulas for \(\alpha \) obtained by Furusho deliver the answer

\[h_{1,3}(t \otimes r) = - \text{Li}(t). \]

On the other hand, elements of type \(D \) are in a certain sense *decomposable*, so the computation of their image reduces to the abelian case.