Introduction to Singularities, 201.1.0361
 Homework 1

Spring 2017 (D.Kerner)
(1) For the given functions $\left(\mathbb{R}^{n}, 0\right) \xrightarrow{f} \mathbb{R}$ rectify the set $f^{-1}(0)$ and the graph of f. (Namely, show an explicit local change of variables that sends $f^{-1}(0)$ and the graph to linear spaces)
i. $f(x, y, z)=z-e^{y}+\cos (x)$,
ii. $f(x, y)=x^{2}+x-y^{2}$,
iii. $f(x, y)=\sin (x)+\ln \left(1+x^{2}+y^{2}\right)$.
(2) Draw the sets $f^{-1}(0) \subset \mathbb{R}^{2}$ in the following cases:
i. $f(x, y)=x y, \quad$ ii. $\quad f(x, y)=x^{2}-y^{2}, \quad$ iii. $f(x, y)=y^{2}-x^{2 n}, \quad$ iv. $\quad f(x, y)=y^{2}-x^{2 n+1}$,
v. $f(x, y)=y^{2}-x^{2}-x^{3}$, (here google: "nodal cubic")
(3) Draw the sets $f^{-1}(0) \subset \mathbb{R}^{3}$ in the following cases:
i. $f(x, y, z)=x y$, ii. $f(x, y, z)=x y z$, iii. $f(x, y, z)=\left(z-x^{2}\right) z$, iv. $f(x, y, z)=\left(z-x^{2}-y^{2}\right) z$, v. $f(x, y, z)=z^{2}-x^{3}, \quad$ vi. $f(x, y, z)=y^{2}-x^{2} z$, (here google: "Whitney umbrella")
(4) For many pictures of singular curves/surfaces go to: https://imaginary.org/galleries
(5) Let R be one of the following:
i. $C^{\infty}\left(\mathbb{R}^{n}, 0\right)=\left\{\right.$ infinitely differentiable functions defined on some open neighborhoods of $\left.0 \in \mathbb{R}^{n}\right\}$. (Note: each function is defined on its own open neighborhood.)
ii. $\mathbb{R}\left[\left[x_{1}, \ldots, x_{n}\right]\right]=\left\{\right.$ formal power series in variables x_{1}, \ldots, x_{n}, with real coefficients $\}$. And similarly $\mathbb{C}[[\underline{x}]]$.
iii. $\mathbb{R}\{\underline{x}\}=$ ppower series in variables x_{1}, \ldots, x_{n} that converge in some open neighborhoods of $0 \in$ $\left.\mathbb{R}^{n}\right\} \subset \mathbb{R}[[\underline{x}]]$. (The convergence as was defined in the lecture. Note: each power series has its own domain of convergence.) And similarly $\mathbb{C}\{\underline{x}\}$.
(a) Prove: R is a commutative, associative ring with a unit. (Let $\mathcal{D}_{f}, \mathcal{D}_{g}$ be the domains of definition for f, g. What are the domains of definition for $f+g, f \cdot g$?)
(b) Define $\mathfrak{m}:=\{f \in R \mid f(0)=0\}$. Prove that $\mathfrak{m} \subseteq R$ is an ideal.
(c) For $f \in R$ prove: if $f(0) \neq 0$ then $\frac{1}{f} \in R$. (For the cases $R=\mathbb{R}\{\underline{x}\}, \mathbb{C}\{\underline{x}\}$ one needs some auxiliary results from analysis, you can omit these cases meanwhile.)
(d) Prove that \mathfrak{m} is a maximal ideal in R, i.e. if an ideal $I \subseteq R$ satisfies $I \supsetneq \mathfrak{m}$, then $I=R$. Can you demonstrate some nice/simple generators of \mathfrak{m} ?
(e) Prove that \mathfrak{m} is the unique maximal ideal in R. (A ring that has a unique maximal ideal is called "local", geometrically it corresponds to a "small" open neighborhood of a point.)
(f) The Jacobian ideal of an element $f \in R$ is defined by $\operatorname{Jac}(f)=\left\langle\partial_{1} f, \ldots, \partial_{n} f\right\rangle \subset R$. Prove: $J a c(f) \neq R$ (and thus $J a c(f) \subseteq \mathfrak{m})$ iff 0 is a critical point of f.
(6) Draw $f^{-1}(\epsilon)$ for $\epsilon>0, \epsilon=0, \epsilon<0$ in the following cases:
i. $f(x)=x^{p}$ (here $p=1$ or $p \geq 2$; distinguish between p odd and even), ii. $f(x, y)=x^{2}-y^{2}$,
iii. $f(x, y)=x^{2}+y^{2}$, iv. $f(x, y, z)=x^{2}+y^{2}+z^{2}, \quad$ v. $f(x, y, z)=x^{2}+y^{2}-z^{2}$.

