Introduction to Singularities, 201.1.0361

Homework 1 Spring 2017 (D.Kerner)

- (1) For the given functions (ℝⁿ, 0) → ℝ rectify the set f⁻¹(0) and the graph of f. (Namely, show an explicit local change of variables that sends f⁻¹(0) and the graph to linear spaces)
 i. f(x, y, z) = z e^y + cos(x), ii. f(x, y) = x² + x y², iii. f(x, y) = sin(x) + ln(1 + x² + y²).
- (2) Draw the sets $f^{-1}(0) \subset \mathbb{R}^2$ in the following cases: i. f(x,y) = xy, ii. $f(x,y) = x^2 - y^2$, iii. $f(x,y) = y^2 - x^{2n}$, iv. $f(x,y) = y^2 - x^{2n+1}$, v. $f(x,y) = y^2 - x^2 - x^3$, (here google: "nodal cubic")
- (3) Draw the sets $f^{-1}(0) \subset \mathbb{R}^3$ in the following cases:
 - i. f(x, y, z) = xy, ii. f(x, y, z) = xyz, iii. $f(x, y, z) = (z x^2)z$, iv. $f(x, y, z) = (z x^2 y^2)z$, v. $f(x, y, z) = z^2 x^3$, vi. $f(x, y, z) = y^2 x^2z$, (here google: "Whitney umbrella")
- (4) For many pictures of singular curves/surfaces go to: https://imaginary.org/galleries
- (5) Let R be one of the following:
 - i. $C^{\infty}(\mathbb{R}^n, 0) = \{ \text{infinitely differentiable functions defined on some open neighborhoods of } 0 \in \mathbb{R}^n \}.$ (Note: each function is defined on its own open neighborhood.)
 - ii. $\mathbb{R}[[x_1, \ldots, x_n]] = \{\text{formal power series in variables } x_1, \ldots, x_n, \text{ with real coefficients} \}$. And similarly $\mathbb{C}[\underline{x}]$.
 - iii. $\mathbb{R}\{\underline{x}\} = \{\text{power series in variables } x_1, \dots, x_n \text{ that converge in some open neighborhoods of } 0 \in \mathbb{R}^n\} \subset \mathbb{R}[[\underline{x}]]$. (The convergence as was defined in the lecture. Note: each power series has its own domain of convergence.) And similarly $\mathbb{C}\{\underline{x}\}$.
 - (a) Prove: R is a commutative, associative ring with a unit. (Let $\mathcal{D}_f, \mathcal{D}_g$ be the domains of definition for f, g. What are the domains of definition for $f + g, f \cdot g$?)
 - (b) Define $\mathfrak{m} := \{f \in R | f(0) = 0\}$. Prove that $\mathfrak{m} \subseteq R$ is an ideal.
 - (c) For $f \in R$ prove: if $f(0) \neq 0$ then $\frac{1}{f} \in R$. (For the cases $R = \mathbb{R}\{\underline{x}\}, \mathbb{C}\{\underline{x}\}$ one needs some auxiliary results from analysis, you can omit these cases meanwhile.)
 - (d) Prove that \mathfrak{m} is a maximal ideal in R, i.e. if an ideal $I \subseteq R$ satisfies $I \supseteq \mathfrak{m}$, then I = R. Can you demonstrate some nice/simple generators of \mathfrak{m} ?
 - (e) Prove that **m** is the unique maximal ideal in *R*. (A ring that has a unique maximal ideal is called "local", geometrically it corresponds to a "small" open neighborhood of a point.)
 - (f) The Jacobian ideal of an element $f \in R$ is defined by $Jac(f) = \langle \partial_1 f, \ldots, \partial_n f \rangle \subset R$. Prove: $Jac(f) \neq R$ (and thus $Jac(f) \subseteq \mathfrak{m}$) iff 0 is a critical point of f.
- (6) Draw $f^{-1}(\epsilon)$ for $\epsilon > 0$, $\epsilon = 0$, $\epsilon < 0$ in the following cases:
 - i. $f(x) = x^p$ (here p = 1 or $p \ge 2$; distinguish between p odd and even), ii. $f(x, y) = x^2 y^2$, iii. $f(x, y) = x^2 + y^2$, iv. $f(x, y, z) = x^2 + y^2 + z^2$, v. $f(x, y, z) = x^2 + y^2 - z^2$.