Introduction to Singularities, 201.1.0361 Homework 2

Spring 2017 (D.Kerner)
Let the field \mathbb{k} be one of \mathbb{R}, \mathbb{C}, let the ring R be one of $C^{\infty}\left(\mathbb{R}^{n}, 0\right), \mathbb{k}[[\underline{x}]], \mathbb{k}\{\underline{x}\}$.
(1) (a) Find $\operatorname{ord}(f)$ in the following cases: i. $f=\sin ^{p}\left(\sin ^{q}(x)\right)$, ii. $f=\ln \left(1+x^{p}\right)$.
(b) Prove the equivalent definitions of $\operatorname{ord}(f)$:
i. $\operatorname{ord}(f)=p$ iff $f(0)=\left.f^{(1)}\right|_{0}=\cdots=\left.f^{(p-1)}\right|_{0}=0$ and $\left.f^{(p)}\right|_{0} \neq 0$.
ii. $\operatorname{ord}(f)=\sup \left\{p \mid f \in(\underline{x})^{p}, f \notin(\underline{x})^{p+1}\right\}$.
(c) Prove the basic properties of $\operatorname{ord}(f)$:
i. Suppose $R \neq C^{\infty}\left(\mathbb{R}^{n}, 0\right)$. Then $\operatorname{ord}(f)=\infty$ iff $f \equiv 0$. (For the ring $R=C^{\infty}\left(\mathbb{R}^{n}, 0\right)$ there are many elements (functions flat at the origin) with $\operatorname{ord}(f)=\infty$.)
ii. $\operatorname{ord}(f \cdot g)=\operatorname{ord}(f) \operatorname{ord}(g), \quad \operatorname{ord} \frac{f}{g}=\operatorname{ord}(f)-\operatorname{ord}(g)$.
iii. $\operatorname{ord}(f \pm g) \geq \min (\operatorname{ord}(f), \operatorname{ord}(g))$, give an example with strict inequality.
iv. If $f \stackrel{\mathcal{K}}{\sim} g$ then $\operatorname{ord}(f)=\operatorname{ord}(g)$.
(2) (a) Let $f \in C^{\infty}\left(\mathbb{R}^{1}, 0\right)$ and suppose ord $(f)>p$. Prove that $\frac{f(x)}{x^{p}} \in C^{\infty}\left(\mathbb{R}^{1}, 0\right)$. Prove that $\sqrt[p]{1+\frac{f_{>p}(x)}{x^{p}}} \in$ $C^{\infty}\left(\mathbb{R}^{1}, 0\right)$.
(b) Suppose $f \in \mathfrak{m} \subset R$, prove that $\sqrt[p]{1+f} \in R$. (You can use the implicit function theorem for all our choices of R.)
(3) (a) Check that \mathcal{R} is indeed an equivalence relation on R.

Recall that a change of variables, $\phi \circlearrowright\left(\mathbb{R}^{n}, 0\right),\left(\mathbb{C}^{n}, 0\right)$, induces an auto- $\quad R \quad \xrightarrow{\phi^{*}} \quad R$
(b) morphism of the local rings, making the diagram commute. Obtain from $\cup \cup$ here the criterion: the Milnor algebra is an invariant of \mathcal{R}-equivalence. $\operatorname{Jac}(f) \rightarrow \operatorname{Jac}\left(\phi^{*}(f)\right)$ (In particular, its dimension, as a vector space, is invariant.)
(c) Which of the following are \mathcal{R}-equivalent? (You can use the implicit function theorem in R.) In each case compute the Milnor number.
i. $y^{2}-x^{n}$,
ii. $y^{2}+y^{3}-x^{n}-x^{n+1}$,
iii. $y^{2}-y x^{n}-x^{2 n}$,
iv. $y^{3}-x^{n}, \quad$ v. $y^{3}-y x^{n}$.
(4) (a) Check that \mathcal{K} is indeed an equivalence relation on R.
(b) Let $f, g \in R$, with $f(0)=0$ and $f \stackrel{\mathcal{K}}{\sim} g$. Prove that 0 is a critical point of f iff it is a critical point of g. Is the condition $f(0)=0$ necessary here?
(c) (Here $\mathbb{k}=\mathbb{C}$.) Let $f_{t}=x^{p}+y^{q}+z^{r}+t x y z$, with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$. Prove that $f_{t} \stackrel{\mathcal{K}}{\sim} f_{1}$ for any $t \neq 0$. What is the condition on t, t^{\prime} to ensure $f_{t} \stackrel{\mathcal{R}}{\sim} f_{t^{\prime}}$?
(In question 3.c. you saw countably many distinct \mathcal{R}-types. Here you see a continuum of distinct \mathcal{R}-types. Later we will see examples with continua of distinct \mathcal{K}-types. C'est la vie.)
(5) (a) Suppose $f(0)=0$ and 0 is a critical point of f. Consider the matrix of second derivatives, $\left.f^{(2)}\right|_{0}$. Write down the transformation rule for this matrix under \mathcal{R}, \mathcal{K}-equivalences. Prove that $\operatorname{rank}\left(\left.f^{(2)}\right|_{0}\right)$ is \mathcal{K}-invariant.
(b) Prove that $\left.f^{(2)}\right|_{0}$ can be diagonalized by a local change of coordinates. (In Linear Algebra you saw that a symmetric matrix can be diagonalized by $A \rightarrow U^{t} A U$. Here, if A is over \mathbb{R}, then so is U. In particular, all the eigenvalues of A are real.)
(c) Given a symmetric matrix, $A \in M a t_{n \times n}^{s y m}(\mathbb{R})$, denote by $\left(n_{+}, n_{0}, n_{-}\right)$the number of its positive/zero/negative eigenvalues. Prove that the triple (n_{+}, n_{0}, n_{-}) is preserved under \mathcal{R}-equivalence. (Though the eigenvalues are not preserved.) Prove that the numbers $n_{0},\left|n_{+}-n_{-}\right|$are preserved under \mathcal{K}-equivalence.
(d) Let $p(\underline{x})$ be a polynomial of degree 2 , not necessarily homogeneous. Prove that there exists an affine change of coordinates, $\underline{x} \rightarrow U \cdot \underline{x}+\underline{v}$, (for some $U \in M a t_{n \times n}(\mathbb{k})$ and some $\underline{v} \in \mathbb{k}^{n}$) that brings $p(\underline{x})$ to the form: $\sum_{i=1}^{r}(\pm) x_{i}^{2}+c_{1} x_{r+1}+c_{0}$. Here:
(i) (\pm) are only for the case $\mathbb{k}=\mathbb{R}$;
(ii) c_{1} is either 0 or 1 ;
(iii) if $c_{1} \neq 0$ then $c_{0}=0$.
(e) Use this to classify all the curves of degree 2 in \mathbb{R}^{2}. What about the surfaces of degree 2 in \mathbb{R}^{3} ?

