Introduction to Singularities, 201.1.0361 Homework 2

Spring 2017 (D.Kerner)

Let the field k be one of \mathbb{R} , \mathbb{C} , let the ring R be one of $C^{\infty}(\mathbb{R}^n, 0)$, $\mathbb{k}[[\underline{x}]], \mathbb{k}\{\underline{x}\}$.

- (1) (a) Find ord(f) in the following cases: i. $f = sin^p(sin^q(x))$, ii. $f = ln(1 + x^p)$. (b) Prove the equivalent definitions of ord(f):
 - i. ord(f) = p iff $f(0) = f^{(1)}|_0 = \cdots = f^{(p-1)}|_0 = 0$ and $f^{(p)}|_0 \neq 0$. ii. $ord(f) = \sup\{p | f \in (\underline{x})^p, f \notin (\underline{x})^{p+1}\}.$
 - (c) Prove the basic properties of ord(f): i. Suppose $R \neq C^{\infty}(\mathbb{R}^n, 0)$. Then $ord(f) = \infty$ iff $f \equiv 0$. (For the ring $R = C^{\infty}(\mathbb{R}^n, 0)$ there are many elements (functions flat at the origin) with $ord(f) = \infty$.) ii. $ord(f \cdot g) = ord(f)ord(g), \quad ord \frac{f}{g} = ord(f) - ord(g).$ iii. $ord(f \pm g) \ge min(ord(f), ord(g))$, give an example with strict inequality. iv. If $f \stackrel{\mathcal{K}}{\sim} q$ then ord(f) = ord(q).
- (2) (a) Let $f \in C^{\infty}(\mathbb{R}^1, 0)$ and suppose ord(f) > p. Prove that $\frac{f(x)}{x^p} \in C^{\infty}(\mathbb{R}^1, 0)$. Prove that $\sqrt[p]{1 + \frac{f_{\geq p}(x)}{x^p}} \in C^{\infty}(\mathbb{R}^1, 0)$. $C^{\infty}(\mathbb{R}^1, 0).$
 - (b) Suppose $f \in \mathfrak{m} \subset R$, prove that $\sqrt[p]{1+f} \in R$. (You can use the implicit function theorem for all our choices of R.)
- (3) (a) Check that \mathcal{R} is indeed an equivalence relation on R. Recall that a change of variables, $\phi \circlearrowright (\mathbb{R}^n, 0), (\mathbb{C}^n, 0)$, induces an auto-
 - $\begin{array}{cc} R & \stackrel{\phi^*}{\rightarrow} \\ \cup & \end{array}$ (b) morphism of the local rings, making the diagram commute. Obtain from here the criterion: the Milnor algebra is an invariant of \mathcal{R} -equivalence. $Jac(f) \rightarrow Jac(\phi^*(f))$ (In particular, its dimension, as a vector space, is invariant.)
 - (c) Which of the following are \mathcal{R} -equivalent? (You can use the implicit function theorem in R.) In each case compute the Milnor number. iii. $y^2 - yx^n - x^{2n}$, iv. $y^3 - x^n$, v. $y^3 - yx^n$. i. $y^2 - x^n$, ii. $y^2 + y^3 - x^n - x^{n+1}$,
- (4) (a) Check that \mathcal{K} is indeed an equivalence relation on R.
 - (b) Let $f, g \in R$, with f(0) = 0 and $f \stackrel{\mathcal{K}}{\sim} g$. Prove that 0 is a critical point of f iff it is a critical point of g. Is the condition f(0) = 0 necessary here?
 - (c) (Here $\mathbb{k} = \mathbb{C}$.) Let $f_t = x^p + y^q + z^r + txyz$, with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$. Prove that $f_t \stackrel{\mathcal{K}}{\sim} f_1$ for any $t \neq 0$. What is the condition on t, t' to ensure $f_t \stackrel{\mathcal{R}}{\sim} f_{t'}$? (In question 3.c. you saw countably many distinct \mathcal{R} -types. Here you see a continuum of distinct \mathcal{R} -types. Later we will see examples with continua of distinct \mathcal{K} -types. C'est la vie.)
- (5) (a) Suppose f(0) = 0 and 0 is a critical point of f. Consider the matrix of second derivatives, $f^{(2)}|_0$. Write down the transformation rule for this matrix under \mathcal{R} , \mathcal{K} -equivalences. Prove that $rank(f^{(2)}|_0)$ is \mathcal{K} -invariant.
 - (b) Prove that $f^{(2)}|_0$ can be diagonalized by a local change of coordinates. (In Linear Algebra you saw that a symmetric matrix can be diagonalized by $A \to U^t A U$. Here, if A is over \mathbb{R} , then so is U. In particular, all the eigenvalues of A are real.)
 - (c) Given a symmetric matrix, $A \in Mat_{n \times n}^{sym}(\mathbb{R})$, denote by (n_+, n_0, n_-) the number of its positive/zero/negative eigenvalues. Prove that the triple (n_+, n_0, n_-) is preserved under \mathcal{R} -equivalence. (Though the eigenvalues are not preserved.) Prove that the numbers $n_0, |n_+ - n_-|$ are preserved under \mathcal{K} -equivalence.
 - (d) Let $p(\underline{x})$ be a polynomial of degree 2, not necessarily homogeneous. Prove that there exists an affine change of coordinates, $\underline{x} \to U \cdot \underline{x} + \underline{v}$, (for some $U \in Mat_{n \times n}(\mathbb{k})$ and some $\underline{v} \in \mathbb{k}^n$) that brings $p(\underline{x})$ to the form: $\sum_{i=1}^{r} (\pm) x_i^2 + c_1 x_{r+1} + c_0$. Here:
 - (i) (±) are only for the case $\mathbb{k} = \mathbb{R}$;
 - (ii) c_1 is either 0 or 1;
 - (iii) if $c_1 \neq 0$ then $c_0 = 0$.
 - (e) Use this to classify all the curves of degree 2 in \mathbb{R}^2 . What about the surfaces of degree 2 in \mathbb{R}^3 ?

R