Introduction to Singularities, 201.1.0361

Homework 3 Spring 2017 (D.Kerner)

Let the field \Bbbk be one of \mathbb{R}, \mathbb{C} , let the ring R be one of $C^{\infty}(\mathbb{R}^n, 0), \, \Bbbk[[\underline{x}]], \, \Bbbk\{\underline{x}\}.$

(1) (over \mathbb{C}) Prove: f is complex-differentiable at pt iff $f(\underline{z}) = f(pt) + \sum_{j=1}^{n} a_j(\underline{z})(z_j - pt_j)$, where $\{a_j(\underline{z})\}$ are continuous.

(2) In the lecture, in the proof of implicit function theorem, we showed: if the matrix $\{\partial_{x_j} F_i(\underline{x}, \underline{y})\} \in Mat_{m \times m}(\mathbb{C})$ is non-degenerate, then so is the $2m \times 2m$ matrix composed of the real and imaginary parts. The proof was by a direct computation. This is also implied by any of the following statements, prove them.

Given a linear map of \mathbb{K} -vector spaces, $V \xrightarrow{L} W$ and a subfield $\mathbb{k} \subset \mathbb{K}$. Consider V, W as vector spaces over \mathbb{k} , then we have the induced \mathbb{k} -linear map $V_{\mathbb{k}} \xrightarrow{(L)_{\mathbb{k}}} W_{\mathbb{k}}$.

- (a) L is surjective iff $(L)_{k}$ is surjective.
- (b) L is injective iff $(L)_{k}$ is injective.
- (3) We proved the implicit function theorem for the ring $\mathbb{C}\{\underline{x}\}$. Obtain from here the implicit function theorem for the ring $\mathbb{R}\{\underline{x}\}$.
- (4) (We proved the Morse lemma in the class. You can use the ideas in the proof for the questions below.)
 (a) Let g₁ ∈ (x²) ∩ m³, g₂ ∈ (y²) ∩ m³. Construct a change of coordinates that brings x² + y² + g₁ + g₂ to x² + y².
 - (b) Construct a change of variables that brings $x^2 + y^2 + z^2 + xyz$ to $x^2 + y^2 + z^2$.
 - (c) Prove: if o is a non-degenerate critical point of some $f \in R$, and f(o) = 0, then $f \stackrel{\mathcal{R}}{\sim} \sum (\pm) x_i^2$.
 - (d) More generally, for the matrix of second derivatives, suppose $rank(f^{(2)}|_o) = r$. Prove: $f \approx \sum_{i=1}^r (\pm)x_i^2 + f_{\geq 3}(x_{r+1}, \ldots, x_n)$, where $f_{\geq 3}(x_{r+1}, \ldots, x_n) \in \mathfrak{m}^3$.
- (5) Compute the Milnor/Tjurina numbers for the following critical points: i. $f(x,y) = y^p + x^q$, ii. $f(x,y) = y^p x + x^q$, iii. $f(x,y) = y^4 + y^2 x + x^4$. iv. $f = \frac{x^5}{5} + \frac{y^5}{5} + \frac{x^3y^3}{3}$.
- (6) (a) In the class we observed: if $f \in \mathfrak{m}^3$ then $\mu(f) \ge n+1$. Use the same methods to prove a stronger result: if ord(f) = p and dim(R) = n then $\mu(f) \ge \binom{n+p-1}{p-1} n$.
 - (b) Classify (up to \mathcal{R} -equivalence) the critical points with $\mu = 3, 4$.
 - (c) For $f, g \in R$ suppose ord(f) = p = ord(g) and present $f = f_p + f_{>p}$, $g = g_p + g_{>p}$. Prove: if $f \stackrel{\mathcal{R}}{\sim} g$ then $f_p \stackrel{GL_n(\Bbbk)}{\sim} g_p$, where *n* is the number of variables and the action $GL_n(\Bbbk) \circlearrowright \Bbbk^n$ is the usual one.
 - (d) Similarly prove: if $f \stackrel{\mathcal{K}}{\sim} g$ then $f_p \stackrel{GL_n(\Bbbk)}{\sim} (\pm)g_p$.
 - (e) Let $R = \mathbb{k}[[x, y]]$. Prove that the sets $x^4 + \mathfrak{m}^5$, $x^3y + \mathfrak{m}^5$, $x^2y^2 + \mathfrak{m}^5$ are disjoint under \mathcal{K} -equivalence. (i.e. no element from one set is equivalent to an element from the other)
- (7) (a) Let $g(x, y, z) = z^3 + f(x, y)$. Express $\mu(g)$ via $\mu(f)$.
 - (b) More generally, suppose $f(\underline{x}, \underline{y}) = g_1(\underline{x}) + g_2(\underline{y})$, with $\mu(g_1), \mu(g_2) < \infty$. Fix some basis of the Milnor algebra of g_1 , as a vector space, $\{v_i^{(1)}\}$. Similarly, let $\{v_j^{(2)}\}$ be the vector space basis of the Milnor algebra of g_2 . Prove that $\{v_i^{(1)} \otimes v_j^{(2)}\}$ is a basis for the Milnor algebra of $g_1(\underline{x}) + g_2(\underline{y})$. Express $\mu(g_1(\underline{x}) + g_2(\underline{y}))$ via $\mu(g_1(\underline{x})), \mu(g_2(\underline{y}))$.