Introduction to Singularities, 201.1.0361 Homework 4

Spring 2017 (D.Kerner)

Let the field k be one of \mathbb{R}, \mathbb{C} , let the ring R be one of $C^{\infty}(\mathbb{R}^n, 0), k[[x]], k\{x\}$.

- (1) (a) In the lecture we have defined weighted-homogeneity, $f(\lambda^{w_1}x_1, \ldots, \lambda^{w_n}x_n) = \lambda^{w_f}f(\underline{x})$. \varnothing Let $f = \sum a_{\underline{m}}\underline{x}^{\underline{m}} \in \mathbb{k}[[\underline{x}]]$. Prove: f is weighted-homogeneous iff there exists (w_1, \ldots, w_n) and w_f such that for any non-zero coefficient $a_{\underline{m}}$ in f holds: $\sum w_i m_i = w_f$.
 - (b) Prove: if f is weighted homogeneous (possibly after a change of coordinates) then $\mu(f) = \tau(f)$.
 - (c) Give an example of non-isolated critical point for which $\mu(f) = \tau(f)(=\infty)$, and $f \in Jac(f)$, but f is not weighted-homogeneous in any coordinate system. (One such example was given in the lecture.)
- (2) (a) Prove: $\dim R/J_{ac(f)} < \infty$ iff for some a holds: $\dim R/\mathfrak{m}^a \cdot J_{ac(f)} < \infty$.
 - (b) Prove: $\dim R/J_{ac(f)+(f)} < \infty$ iff for some a holds: $\dim R/\mathfrak{m}^a \cdot (J_{ac(f)+(f)}) < \infty$.
 - (c) Prove: if $\mu(f) < \infty$ then the critical locus of f is (set-theoretically) a point. (The converse statement holds for $R = \mathbb{C}\{\underline{x}\}$), its proof will be given later.) Does the converse statement hold also for $R = \mathbb{R}\{\underline{x}\}$?
- (3) (a) Prove: $x^3 + y^4 \stackrel{\mathcal{R}}{\sim} x^3 + y^4 + x^2y^2 + xy^3$, $x^p + y^p \stackrel{\mathcal{R}}{\sim} x^p + y^p + y^2x^{p-1} + x^3y^{p-1}$. (In the ring $\Bbbk\{x\}$.)
 - (b) Find the order of \mathcal{R} -determinacy in the following cases (for $R = \mathbb{k}[[x, y]], R = \mathbb{k}[[x, y, z]]$): i. $x^3 + y^k$, ii. $x^3 + xy^3$, iii. $x^3 + y^3 + z^3$.
 - (c) Prove that any f with $\mu(f) = 5$ is \mathcal{R} -equivalent to $y^2x + x^4 + (\text{sum of squares of the other variables})$. The traditional notation for this singularity is D_5 .
- (4) In the lecture we have defined the groups \mathcal{R} , \mathcal{K} . (Check that these are indeed groups. What is the inverse of the element $[f \to u \cdot \phi^* f]$?)
 - (a) Define $\mathcal{R}^{(j)} := \{g \in \mathcal{R} | g(\underline{x}) \underline{x} \in \mathfrak{m}^{j} R^{\oplus n}\}$. Prove: $\mathcal{R}^{(j)} \triangleleft \mathcal{R}$ (a normal subgroup). Describe the group $\mathcal{R}/_{\mathcal{R}^{(1)}}$.
 - (b) Similarly, define $\mathcal{K}^{(j)}$, prove that $\mathcal{K}^{(j)} \triangleleft \mathcal{K}$ (a normal subgroup), and describe $\mathcal{K}_{\mathcal{K}^{(1)}}$.
- (5) (a) Below we assume: $R = \mathbb{k}[[\underline{x}]]$ and $D = \sum \phi_i \frac{\partial}{\partial x_i}$ satisfies $D(\mathfrak{m}) \subseteq \mathfrak{m}^2$. (Check that in this case: $D(\mathfrak{m}^i) \subseteq \mathfrak{m}^{i+1}$.) (i) Prove: for any $f \in R$: $e^D(f)$ is a well defined power series, $e^D(f(\underline{x})) = f(e^D(\underline{x}))$ and $e^D(f \cdot g) = e^D(f) \cdot e^D(g)$.
 - (ii) Does the following identity hold: $e^D(f(\underline{x})) = f(\underline{x} + \phi)$?
 - (iii) Suppose $e^{D_1}(f) = e^{D_2}(f)$ for any $f \in R$. Prove that $D_1 = D_2$.
 - (iv) Prove that for any $f \in R$, ln(Id + D)(f) is a well defined power series. Is ln(Id + D) an automorphism of R?
 - (v) Prove: $ln(e^D) = D$ and $e^{ln(Id+D)} = Id + D$.
 - (b) Let D be a differential operator that contains derivatives of higher order. Do the above properties hold?
 - (c) Let $\{D_j\}$ be a sequence of first-order differential operators, satisfying: $D_j(\mathfrak{m}) \subseteq \mathfrak{m}^{1+j}$. Prove: that the limit $\lim (e^{D_j}e^{D_{j-1}}\cdots e^{D_1})$ exists and is a well defined automorphism of R.
 - (d) Let $f \in R = \Bbbk\{x\}$, with the radius of convergence r. For which $a \in \Bbbk$ is $e^{a\frac{d}{dx}}(f)$ a well defined power series?
- (6) (a) Which of the following ideals (in $k[[\underline{x}]]$) is radical? For those that are not radical, compute their radicals. i. (sin(sin(x))), ii. (cos(x) - 1), iii. $(x^3 - y^5, y^3 - x^5)$.
 - (b) Is the ideal $\mathfrak{m}^{\infty} \subset C^{\infty}(\mathbb{R}^p, 0)$ a radical ideal?
- (7) (a) Fix a domain $\mathcal{U} \subset \mathbb{C}^n$. Prove:
 - (i) An analytic subset of \mathcal{U} is closed in \mathcal{U} .
 - (ii) A locally analytic subset of \mathcal{U} is locally closed.
 - (iii) A locally analytic subset is analytic iff it is closed.
 - (b) Recall: a subset $X \subset \mathcal{U}$ is called *nowhere dense* if $Int(\overline{X}) = \emptyset$. Suppose $X \subsetneq \mathcal{U}$ is an analytic subset, prove: X is nowhere dense in \mathcal{U} .
 - (c) We have defined the notion of point-set germ as the class of equivalence under some relation. Check that this is indeed an equivalence relation.
 - (d) Suppose two tuples of elements define the same ideal, $(f_1, \ldots, f_r) = (g_1, \ldots, g_k) \subset \mathbb{C}\{\underline{x}\}$. Prove: $(V_f, 0) = (V_{g,0})$.

