Introduction to Singularities, 201.1.0361 Homework 4
 Spring 2017 (D.Kerner)

Let the field \mathbb{k} be one of \mathbb{R}, \mathbb{C}, let the ring R be one of $C^{\infty}\left(\mathbb{R}^{n}, 0\right), \mathbb{k}[[\underline{x}]], \mathbb{k}\{\underline{x}\}$.
(1) (a) In the lecture we have defined weighted-homogeneity, $f\left(\lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{n}} x_{n}\right)=\lambda^{w_{f}} f(\underline{x})$.

Let $f=\sum a_{\underline{m}} \underline{x} \underline{\underline{m}} \in \mathbb{k}[[\underline{x}]]$. Prove: f is weighted-homogeneous iff there exists $\left(w_{1}, \ldots, w_{n}\right)$ and w_{f} such that for any non-zero coefficient $a_{\underline{m}}$ in f holds: $\sum w_{i} m_{i}=w_{f}$.
(b) Prove: if f is weighted homogeneous (possibly after a change of coordinates) then $\mu(f)=\tau(f)$.
(c) Give an example of non-isolated critical point for which $\mu(f)=\tau(f)(=\infty)$, and $f \in \operatorname{Jac}(f)$, but f is not weighted-homogeneous in any coordinate system. (One such example was given in the lecture.)
(2) (a) Prove: $\operatorname{dim} R / \operatorname{Jac}(f)<\infty$ iff for some a holds: $\operatorname{dim} R / \mathfrak{m}^{a} \cdot \operatorname{Jac}(f)<\infty$.
(b) Prove: $\operatorname{dim} R / \operatorname{Jac}(f)+(f)<\infty$ iff for some a holds: $\operatorname{dim} R / \mathfrak{m}^{a} \cdot(\operatorname{Jac}(f)+(f))<\infty$.
(c) Prove: if $\mu(f)<\infty$ then the critical locus of f is (set-theoretically) a point. (The converse statement holds for $R=\mathbb{C}\{\underline{x}\}$), its proof will be given later.) Does the converse statement hold also for $R=\mathbb{R}\{\underline{x}\}$?
(3) (a) Prove: $x^{3}+y^{4} \stackrel{\mathcal{R}}{\sim} x^{3}+y^{4}+x^{2} y^{2}+x y^{3}, x^{p}+y^{p} \stackrel{\mathcal{R}}{\sim} x^{p}+y^{p}+y^{2} x^{p-1}+x^{3} y^{p-1}$. (In the ring $\mathbb{k}\{\underline{x}\}$.)
(b) Find the order of \mathcal{R}-determinacy in the following cases (for $R=\mathbb{k}[[x, y]], R=\mathbb{k}[[x, y, z]]$): i. $x^{3}+y^{k}$, ii. $x^{3}+x y^{3}$, iii. $x^{3}+y^{3}+z^{3}$.
(c) Prove that any f with $\mu(f)=5$ is \mathcal{R}-equivalent to $y^{2} x+x^{4}+$ (sum of squares of the other variables). The traditional notation for this singularity is D_{5}.
(4) In the lecture we have defined the groups \mathcal{R}, \mathcal{K}. (Check that these are indeed groups. What is the inverse of the element $\left[f \rightarrow u \cdot \phi^{*} f\right]$?)
(a) Define $\mathcal{R}^{(j)}:=\left\{g \in \mathcal{R} \mid g(\underline{x})-\underline{x} \in \mathfrak{m}^{j} R^{\oplus n}\right\}$. Prove: $\mathcal{R}^{(j)} \triangleleft \mathcal{R}$ (a normal subgroup). Describe the group $\mathcal{R} / \mathcal{R}^{(1)}$.
(b) Similarly, define $\mathcal{K}^{(j)}$, prove that $\mathcal{K}^{(j)} \triangleleft \mathcal{K}$ (a normal subgroup), and describe $\mathcal{K} / \mathcal{K}^{(1)}$.
(5) (a) Below we assume: $R=\mathbb{k}[[\underline{x}]]$ and $D=\sum \phi_{i} \frac{\partial}{\partial x_{i}}$ satisfies $D(\mathfrak{m}) \subseteq \mathfrak{m}^{2}$. (Check that in this case: $D\left(\mathfrak{m}^{i}\right) \subseteq \mathfrak{m}^{i+1}$.)
(i) Prove: for any $f \in R$: $e^{D}(f)$ is a well defined power series, $e^{D}(f(\underline{x}))=f\left(e^{D}(\underline{x})\right)$ and $e^{D}(f \cdot g)=$ $e^{D}(f) \cdot e^{D}(g)$.
(ii) Does the following identity hold: $e^{D}(f(\underline{x}))=f(\underline{x}+\underline{\phi})$?
(iii) Suppose $e^{D_{1}}(f)=e^{D_{2}}(f)$ for any $f \in R$. Prove that $D_{1}=D_{2}$.
(iv) Prove that for any $f \in R, \ln (I d+D)(f)$ is a well defined power series. Is $\ln (I d+D)$ an automorphism of R ?
(v) Prove: $\ln \left(e^{D}\right)=D$ and $e^{\ln (I d+D)}=I d+D$.
(b) Let D be a differential operator that contains derivatives of higher order. Do the above properties hold?
(c) Let $\left\{D_{j}\right\}$ be a sequence of first-order differential operators, satisfying: $D_{j}(\mathfrak{m}) \subseteq \mathfrak{m}^{1+j}$. Prove: that the limit $\lim _{j \rightarrow \infty}\left(e^{D_{j}} e^{D_{j-1}} \cdots e^{D_{1}}\right)$ exists and is a well defined automorphism of R.
(d) Let $f \in R=\mathbb{k}\{x\}$, with the radius of convergence r. For which $a \in \mathbb{k}$ is $e^{a \frac{d}{d x}}(f)$ a well defined power series?
(6) (a) Which of the following ideals (in $\mathbb{k}[[\underline{x}]]$) is radical? For those that are not radical, compute their radicals.
i. $(\sin (\sin (x)))$,
ii. $(\cos (x)-1)$,
iii. $\left(x^{3}-y^{5}, y^{3}-x^{5}\right)$.
(b) Is the ideal $\mathfrak{m}^{\infty} \subset C^{\infty}\left(\mathbb{R}^{p}, 0\right)$ a radical ideal?
(7) (a) Fix a domain $\mathcal{U} \subset \mathbb{C}^{n}$. Prove:
(i) An analytic subset of \mathcal{U} is closed in \mathcal{U}.
(ii) A locally analytic subset of \mathcal{U} is locally closed.
(iii) A locally analytic subset is analytic iff it is closed.
(b) Recall: a subset $X \subset \mathcal{U}$ is called nowhere dense if $\operatorname{Int}(\bar{X})=\varnothing$. Suppose $X \subsetneq \mathcal{U}$ is an analytic subset, prove: X is nowhere dense in \mathcal{U}.
(c) We have defined the notion of point-set germ as the class of equivalence under some relation. Check that this is indeed an equivalence relation.
(d) Suppose two tuples of elements define the same ideal, $\left(f_{1}, \ldots, f_{r}\right)=\left(g_{1}, \ldots, g_{k}\right) \subset \mathbb{C}\{\underline{x}\}$. Prove: $\left(V_{\underline{f}}, 0\right)=\left(V_{\underline{g}, 0}\right)$.

