Introduction to Singularities, 201.1.0361 Homework 5

Spring 2017 (D.Kerner)

- (1) (a) Check that the equivalence used in defining the germs (of sets, of functions, of maps) is indeed an equivalence relation.
 - (b) Verify the basic set-theoretic identities: $(X, 0) \cap (Y, 0) = (X \cap Y, 0), (X, 0) \cup (Y, 0) = (X \cup Y, 0),$ $(X,0) \setminus (Y,0) = (X \setminus Y,0), \ (X,0) \cap (\bigcup(Y_{\alpha},0)) = \bigcup(X \cap Y_{\alpha},0), \ (X,0) \times (Y,0) = (X \times Y,0).$
 - (c) Similarly, denoting by $[f]_p$ the germ of f at a point p, check that the basic operations are well defined and there holds: $[f]_p \pm [g]_p = [f \pm g]_p$, $[f]_p [g]_p = [fg]_p$. Show that with these operations the set of germs of functions becomes a ring. Identify this ring, if one speaks of germs of analytic functions, germs of differentiable functions.
- (2) (a) Let $R = \mathbb{C}\{\underline{x}\}$, consider its ideals and analytic subgerms of \mathbb{C}^n . Prove:
 - (i) If $I_1 \subset I_2$ then $(V(I_1), 0) \supseteq (V(I_2), 0)$. Does there hold $(V(I_1), 0) \supset (V(I_2), 0)$?
 - (ii) If $(X_1, 0) \subset (X_2, 0)$ then $I(X_1) \supset I(X_2)$.
 - (iii) V(I(X,0)) = (X,0). $I(V(I)) \supseteq I$.
 - (b) Show (by examples) that Rückert's Nullstellensatz, $I(V(I)) = \sqrt{I}$, does not hold in the rings $\mathbb{R}\{\underline{x}\}, C^{\infty}(\mathbb{R}^p, 0)$.
- (3) (a) Which of the following rings are Noetherian? i. $C^{\infty}(\mathbb{R}^p, 0)$, ii. $k[x_1, x_2, \ldots]$, iii. $\mathcal{O}(\mathcal{U})$ for some (open) domain $\mathcal{U} \subset \mathbb{C}$. (Here take any sequence $\{x_n\}$ with no condensation points inside \mathcal{U} . Consider $I_n = \{f \in \mathcal{O}(\mathcal{U}) | f(x_n) = f(x_{n+1})\} = \cdots = 0$.
 - (b) Suppose R is Noetherian. Prove that for any system of generators, $\{f_{\alpha}\}_{\alpha}$ of an ideal $I \subset R$ there exists a finite generating subsystem.
- (4) (a) Show (by examples) that $C^{\infty}(\mathbb{R}^p, 0)$ is not a domain.
 - (b) Show (by examples) that $k\{x,y\}/(y^2 x^3)$ is not a unique factorization domain.
 - (c) Prove: any subring of $k[[\underline{x}]]$ is a domain. (In particular the rings $k[\underline{x}], k\{\underline{x}\}$.)
 - (d) Prove: the analytic set-germ $(X, 0) \subset (\mathbb{C}^n, 0)$ is irreducible iff the ideal $I(X, 0) \subset \mathbb{C}\{\underline{x}\}$ is prime.
- (5) Compute the codimensions of the following sets: $\{\sum_{j=1}^{n} x_j^3 = 0\} \subset \mathbb{C}^3, \quad \{xz = y^2, \ x^3 = z^5, \ y^3 = z^4\} \subset \mathbb{C}^3.$
- (6) Given an analytic map $(\mathbb{C}, 0) \to (\mathbb{C}^2, 0), t \to (x(t), y(t))$. Prove: this is a parametrization of the curve germ $(C,0) = \{f(x,y) = 0\}$ iff $f(x(t),y(t)) \equiv 0$ and the subring $\mathbb{C}\{x(t),y(t)\} \subseteq \mathbb{C}\{t\}$ contains the ideal (t^N) for some $N \gg 1.$
- (7) In this question $R = \mathbb{k}[[\underline{x}]].$
 - (a) Suppose $k = \bar{k}$ and $f \in R$ is weighted homogeneous. Prove the factorization $f(x, y) = \prod (a_i y^p b_i x^q)$, for some $p, q \in \mathbb{N}$ and $\{a_i\}, \{b_i\} \in \mathbb{k}$. Draw Γ_f .

 - (b) Draw the Newton diagram of $(y^{p_1} + x^{q_1})(y^{p_2} + x^{q_2})$, where $\frac{q_1}{p_1} < \frac{q_2}{p_2}$. (c) Prove: for any $f \in R$ the diagram Γ_f depends on (f) only, i.e. $\Gamma_f = \Gamma_{uf}$ for any invertible $u \in R$.
 - (d) Here we assume $\mathbb{k} = \overline{\mathbb{k}}$. Fix a face $\sigma \subset \Gamma_f$. Prove: $f|_{\sigma} = x^m y^n \prod (a_i y^p b_i x^q)$, for some $m, n, p, q \in \mathbb{N}$ and $\{a_i\}, \{b_i\} \in \mathbb{k}.$
- (8) (a) Write down (explicitly) the Newton-Puiseux parametrization for the curve singularity $\{y^3 x^5 3x^4y x^7 = 0\}$. (b) Write the first few terms of the parametrization for $\{y^p = x^q + yx^{q-1}\}$, here p < q, gcd(p,q) = 1.
 - (c) Find the curve singularity (the equation) whose parametrization is:
 - i. $(t^3, t^2 + t^4)$, ii. $(t^6, t^8 + t^{13})$. (d) Show that the germ $\{x^5 x^2y^2 + y^5 = 0\}$ has two branches (draw the Newton diagram for each of them) and find the first two terms of the Puiseux series for each of them.
 - (e) Fix a field k, of zero characteristic, and a branch $\{f(x,y)=0\} \subset (k^2,0)$. Given a parametrization $(x(t), y(t)) \in (k^2, 0)$. k[[t]], with x(t) monic of order p, prove: there exists a parametrization $t \to (t^p, \tilde{y}(t))$.
- (9) (a) Suppose the germ $(C,0) \subset (\mathbb{C}^2,0)$ has multiplicity two. Prove that in some local coordinates this germ is: $\{y^2 = x^n\}.$
 - (b) Suppose the germ $(C,0) \subset (\mathbb{C}^2,0)$ consists of a germ $(\tilde{C},0)$ of multiplicity two and a smooth germ (l,0) nontangent to $(\tilde{C}, 0)$. Prove that in some local coordinates $(C, 0) = \{x(y^2 + x^n) = 0\}$.

