Introduction to Singularities, 201.1.0361 Homework 5
 Spring 2017 (D.Kerner)

(1) (a) Check that the equivalence used in defining the germs (of sets, of functions, of maps) is indeed an equivalence relation.

(b) Verify the basic set-theoretic identities: $(X, 0) \cap(Y, 0)=(X \cap Y, 0),(X, 0) \cup(Y, 0)=(X \cup Y, 0)$, $(X, 0) \backslash(Y, 0)=(X \backslash Y, 0),(X, 0) \cap\left(\cup_{\alpha}\left(Y_{\alpha}, 0\right)\right)=\underset{\alpha}{\cup}\left(X \cap Y_{\alpha}, 0\right),(X, 0) \times(Y, 0)=(X \times Y, 0)$.
(c) Similarly, denoting by $[f]_{p}$ the germ of f at a point p, check that the basic operations are well defined and there holds: $[f]_{p} \pm[g]_{p}=[f \pm g]_{p},[f]_{p}[g]_{p}=[f g]_{p}$. Show that with these operations the set of germs of functions becomes a ring. Identify this ring, if one speaks of germs of analytic functions, germs of diferentiable functions.
(2) (a) Let $R=\mathbb{C}\{\underline{x}\}$, consider its ideals and analytic subgerms of \mathbb{C}^{n}. Prove:
(i) If $I_{1} \subset I_{2}$ then $\left(V\left(I_{1}\right), 0\right) \supseteq\left(V\left(I_{2}\right), 0\right)$. Does there hold $\left(V\left(I_{1}\right), 0\right) \supset\left(V\left(I_{2}\right), 0\right)$?
(ii) If $\left(X_{1}, 0\right) \subset\left(X_{2}, 0\right)$ then $I\left(X_{1}\right) \supset I\left(X_{2}\right)$.
(iii) $V(I(X, 0))=(X, 0) . I(V(I)) \supseteq I$.
(b) Show (by examples) that Rückert's Nullstellensatz, $I(V(I))=\sqrt{I}$, does not hold in the rings $\mathbb{R}\{\underline{x}\}, C^{\infty}\left(\mathbb{R}^{p}, 0\right)$.
(3) (a) Which of the following rings are Noetherian?
i. $C^{\infty}\left(\mathbb{R}^{p}, 0\right)$, ii. $\mathbb{k}\left[x_{1}, x_{2}, \ldots\right]$, iii. $\mathcal{O}(\mathcal{U})$ for some (open) domain $\mathcal{U} \subset \mathbb{C}$. (Here take any sequence $\left\{x_{n}\right\}$ with no condensation points inside \mathcal{U}. Consider $I_{n}=\left\{f \in \mathcal{O}(\mathcal{U}) \mid f\left(x_{n}\right)=f\left(x_{n+1}\right)\right\}=\cdots=0$.
(b) Suppose R is Noetherian. Prove that for any system of generators, $\left\{f_{\alpha}\right\}_{\alpha}$ of an ideal $I \subset R$ there exists a finite generating subsystem.
(4) (a) Show (by examples) that $C^{\infty}\left(\mathbb{R}^{p}, 0\right)$ is not a domain.
(b) Show (by examples) that $\mathbb{k}\{x, y\} /\left(y^{2}-x^{3}\right)$ is not a unique factorization domain.
(c) Prove: any subring of $\mathbb{k}[[\underline{x}]]$ is a domain. (In particular the rings $\mathbb{k}[\underline{x}], \mathbb{k}\{\underline{x}\}$.)
(d) Prove: the analytic set-germ $(X, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ is irreducible iff the ideal $I(X, 0) \subset \mathbb{C}\{\underline{x}\}$ is prime.
(5) Compute the codimensions of the following sets: $\left\{\sum_{j=1}^{n} x_{j}^{3}=0\right\} \subset \mathbb{C}^{3}, \quad\left\{x z=y^{2}, x^{3}=z^{5}, y^{3}=z^{4}\right\} \subset \mathbb{C}^{3}$.
(6) Given an analytic map $(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{2}, 0\right), t \rightarrow(x(t), y(t))$. Prove: this is a parametrization of the curve germ $(C, 0)=\{f(x, y)=0\}$ iff $f(x(t), y(t)) \equiv 0$ and the subring $\mathbb{C}\{x(t), y(t)\} \subseteq \mathbb{C}\{t\}$ contains the ideal $\left(t^{N}\right)$ for some $N \gg 1$.
(7) In this question $R=\mathbb{R}[[\underline{x}]]$.
(a) Suppose $\mathbb{k}=\mathbb{k}$ and $f \in R$ is weighted homogeneous. Prove the factorization $f(x, y)=\prod\left(a_{i} y^{p}-b_{i} x^{q}\right)$, for some $p, q \in \mathbb{N}$ and $\left\{a_{i}\right\},\left\{b_{i}\right\} \in \mathbb{k}$. Draw Γ_{f}.
(b) Draw the Newton diagram of $\left(y^{p_{1}}+x^{q_{1}}\right)\left(y^{p_{2}}+x^{q_{2}}\right)$, where $\frac{q_{1}}{p_{1}}<\frac{q_{2}}{p_{2}}$.
(c) Prove: for any $f \in R$ the diagram Γ_{f} depends on (f) only, i.e. $\Gamma_{f}=\Gamma_{u f}$ for any invertible $u \in R$.
(d) Here we assume $\mathbb{k}=\overline{\mathbb{k}}$. Fix a face $\sigma \subset \Gamma_{f}$. Prove: $\left.f\right|_{\sigma}=x^{m} y^{n} \prod\left(a_{i} y^{p}-b_{i} x^{q}\right)$, for some $m, n, p, q \in \mathbb{N}$ and $\left\{a_{i}\right\},\left\{b_{i}\right\} \in \mathbb{k}$.
(8) (a) Write down (explicitly) the Newton-Puiseux parametrization for the curve singularity $\left\{y^{3}-x^{5}-3 x^{4} y-x^{7}=0\right\}$.
(b) Write the first few terms of the parametrization for $\left\{y^{p}=x^{q}+y x^{q-1}\right\}$, here $p<q, \operatorname{gcd}(p, q)=1$.
(c) Find the curve singularity (the equation) whose parametrization is:
i. $\left(t^{3}, t^{2}+t^{4}\right), \quad$ ii. $\left(t^{6}, t^{8}+t^{13}\right)$.
(d) Show that the germ $\left\{x^{5}-x^{2} y^{2}+y^{5}=0\right\}$ has two branches (draw the Newton diagram for each of them) and find the first two terms of the Puiseux series for each of them.
(e) Fix a field \mathbb{k}, of zero characteristic, and a branch $\{f(x, y)=0\} \subset\left(\mathbb{k}^{2}, 0\right)$. Given a parametrization $(x(t), y(t)) \in$ $\mathbb{k}[[t]]$, with $x(t)$ monic of order p, prove: there exists a parametrization $t \rightarrow\left(t^{p}, \tilde{y}(t)\right)$.
(9) (a) Suppose the germ $(C, 0) \subset\left(\mathbb{C}^{2}, 0\right)$ has multiplicity two. Prove that in some local coordinates this germ is: $\left\{y^{2}=x^{n}\right\}$.
(b) Suppose the germ $(C, 0) \subset\left(\mathbb{C}^{2}, 0\right)$ consists of a germ $(\tilde{C}, 0)$ of multiplicity two and a smooth germ $(l, 0)$ nontangent to $(\tilde{C}, 0)$. Prove that in some local coordinates $(C, 0)=\left\{x\left(y^{2}+x^{n}\right)=0\right\}$.

