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Spring 2017 (D.Kerner)

(1) (a) In our proof of the existence of parametrization we have constructed (inductively) the map
(C, 0)→ (C, 0)
t→ (x(t), y(t))

.

We did not have time to prove two properties: i. this map is injective, ii. ordt(x(t)) = mult(C, 0). Prove them.

(b) Given a parametrization
(C, 0)→ (C, 0)
t→ (x(t), y(t))

, with ordtx(t) = p, construct a parametrization t̃→ (t̃p, y(t̃)).

(c) Suppose (C, 0) is smooth with a parametrization (C, 0)
φ→ (C, 0). Rectify (C, 0) to {y = 0} ⊂ (C2, 0). Prove

that the corresponding map (C, 0)
φ→ {y = 0} is an analytic isomorphism. (i.e. both φ and φ−1 are analytic)

(2) (a) Consider the set ∪m≥1C{x
1
m }, here every element is a finite sum

∑
am(x

1
m ), where am(t) ∈ C{t}. Prove that

this set is a local ring. (The name: the ring of Puiseux power series.) Prove that in this ring the implicit
function theorem holds.

(b) The existence of parametrization implies: for any (ŷ-general) series f(x, y) ∈ C{x, y}, f(0, 0) = 0, the equation

f = 0 has a solution y(x) ∈ ∪m≥1C{x
1
m }. Prove a stronger property: for any (ŷ-general) series f(x, y) ∈(

∪m≥1 C{x 1
m }
)
{y}, (i.e. power series in y, whose coefficients are series in fractional powers of x), with

f(0, 0) = 0, the equation f = 0 has a solution y(x) ∈ ∪m≥1C{x
1
m }.

(3) Let f, g ∈ C{x, y}.
(a) Show that i(f, g) ≥ mult(f) ·mult(g).
(b) Prove: mult(f) = min{i(f, g)| g ∈ m ⊂ C{x, y}}. Prove that the minimum is attained for g(x, y) = ax + by,

with a, b generic.

(4) (a) Prove that a line l is tangent to {f = 0} iff i(f, l) > mult(f). In particular, if f is irreducible, prove: mult(f) =

min
(
ord(x(t)), ord(y(t))

)
. (Here (x(t), y(t)) is a parametrization.) When is the tangent cone a linear space?

(b) Define the order of tangency of smooth germs (C1, 0) (C2, 0) as i(C1, C2). Prove: if this order equals p ≥ 1,
then in some coordinates holds: (C1, 0) = {y = 0}, (C2, 0) = {y = xp}.

(c) Fix a branch (C, 0) ⊂ (C2, 0). For any two points p, q ∈ C take the line p, q ⊂ C2. Fix some sequences {pn}, {qn}
converging to (0, 0) ∈ C2. Suppose lim pn, qn exists. Is this necesarily a tangent line of (C, 0)?

(d) Prove that the set of tangent lines of {fp + f>p = 0} is defined by the (reduced) linear factors of fp(x, y).
(e) Suppose the Newton diagram, Γ(C,0) is convenient. Its integral lenght is defined as the number of Z2 points on

Γ(C,0), minus one. Prove: the number of tangent lines (counted without multiplicities) is at most the integral
length of Γ(C,0). When does the inequality occur? Does the bound hold when the tangent lines are counted
with multiplicities?

(5) (a) Consider the curve germ (C, 0) = {
∏

i=1...r
αi 6=αj

(yp − αixq) = 0}. Apply the generic coordinate translations to all the

branches, to reach a curve whose components intersect only at smooth points and each such intersection point
is a node. How many nodes you get?

(b) Fix two smooth real germs, (C1, 0), (C2, 0) ⊂ (R2, 0) ,with i(C1, C2) = p > 1. Can you deomnstrate a real
deformation, C1(ε), C2(ε), that splits the intersection point at (0, 0) into p nodes? (Hint: fix p points on the
x̂-axis and force C1(ε), C2(ε) to pass through them.)

(6) (a) Given an isolated singularity (C, 0), fix some Ballδ(0) and a deformation Cε of C. Does there hold, for |ε| � 1,
µ(C, 0) =

∑
pt∈Cε∩Ballδ(0)

µ(Cε, pt)? (What is the difference between this formula and the one given in the class?)

(b) Let f1(x, y), f2(x, y) be homogeneous polynomials of degrees d1, d2, with no common factors. Compute i(f1, f2).
(c) Let f(x, y) be a homogeneous polynomial of degree p, with no multiple factors. Prove: µ(f) = (p− 1)2.
(d) Fix a (not necessarily homogeneous) polynomial f(x, y), of degree p. Suppose the curve C = f−1(0) ⊂ C2 has

an isolated singularity at the origin. Prove: µ(C, 0) ≤ (p− 1)2. (Hint: choose the generic coordinate axes, such
that f(x, y) contains the monomials xp, yp. Present f as a deformation of some homogeneous polynomial of
degree p.)


