Introduction to Singularities, 201.1.0361 Homework 6

Spring 2017 (D.Kerner)

(1) (a) In our proof of the existence of parametrization we have constructed (inductively) the map $\begin{pmatrix} (\mathbb{C}, 0) \to (C, 0) \\ t \to (x(t), y(t)) \end{pmatrix}$.

We did not have time to prove two properties: i. this map is injective, ii. $ord_t(x(t)) = mult(C, 0)$. Prove them.

- (b) Given a parametrization $\begin{pmatrix} (\mathbb{C}, 0) \to (C, 0) \\ t \to (x(t), y(t)) \end{pmatrix}$, with $ord_t x(t) = p$, construct a parametrization $\tilde{t} \to (\tilde{t}^p, y(\tilde{t}))$.
- (c) Suppose (C,0) is smooth with a parametrization $(\mathbb{C},0) \xrightarrow{\phi} (C,0)$. Rectify (C,0) to $\{y=0\} \subset (\mathbb{C}^2,0)$. Prove that the corresponding map $(\mathbb{C},0) \xrightarrow{\phi} \{y=0\}$ is an analytic isomorphism. (i.e. both ϕ and ϕ^{-1} are analytic)
- (2) (a) Consider the set $\bigcup_{m\geq 1} \mathbb{C}\{x^{\frac{1}{m}}\}$, here every element is a *finite* sum $\sum a_m(x^{\frac{1}{m}})$, where $a_m(t) \in \mathbb{C}\{t\}$. Prove that this set is a local ring. (The name: the ring of Puiseux power series.) Prove that in this ring the implicit function theorem holds.
 - (b) The existence of parametrization implies: for any $(\hat{y}$ -general) series $f(x,y) \in \mathbb{C}\{x,y\}$, f(0,0) = 0, the equation f = 0 has a solution $y(x) \in \bigcup_{m \ge 1} \mathbb{C}\{x^{\frac{1}{m}}\}$. Prove a stronger property: for any $(\hat{y}$ -general) series $f(x,y) \in (\bigcup_{m \ge 1} \mathbb{C}\{x^{\frac{1}{m}}\})\{y\}$, (i.e. power series in y, whose coefficients are series in fractional powers of x), with f(0,0) = 0, the equation f = 0 has a solution $y(x) \in \bigcup_{m > 1} \mathbb{C}\{x^{\frac{1}{m}}\}$.
- (3) Let $f, g \in \mathbb{C}\{x, y\}$.
 - (a) Show that $i(f,g) \ge mult(f) \cdot mult(g)$.
 - (b) Prove: $mult(f) = min\{i(f,g) | g \in \mathfrak{m} \subset \mathbb{C}\{x,y\}\}$. Prove that the minimum is attained for g(x,y) = ax + by, with a, b generic.
- (4) (a) Prove that a line *l* is tangent to $\{f = 0\}$ iff i(f, l) > mult(f). In particular, if *f* is irreducible, prove: mult(f) = min(ord(x(t)), ord(y(t))). (Here (x(t), y(t)) is a parametrization.) When is the tangent cone a linear space?
 - (b) Define the order of tangency of smooth germs $(C_1, 0)$ $(C_2, 0)$ as $i(C_1, C_2)$. Prove: if this order equals $p \ge 1$, then in some coordinates holds: $(C_1, 0) = \{y = 0\}, (C_2, 0) = \{y = x^p\}.$
 - (c) Fix a branch $(C, 0) \subset (\mathbb{C}^2, 0)$. For any two points $p, q \in C$ take the line $\overline{p, q} \subset \mathbb{C}^2$. Fix some sequences $\{p_n\}, \{q_n\}$ converging to $(0, 0) \in \mathbb{C}^2$. Suppose $\lim \overline{p_n, q_n}$ exists. Is this necessarily a tangent line of (C, 0)?
 - (d) Prove that the set of tangent lines of $\{f_p + f_{>p} = 0\}$ is defined by the (reduced) linear factors of $f_p(x, y)$.
 - (e) Suppose the Newton diagram, $\Gamma_{(C,0)}$ is convenient. Its integral length is defined as the number of \mathbb{Z}^2 points on $\Gamma_{(C,0)}$, minus one. Prove: the number of tangent lines (counted without multiplicities) is at most the integral length of $\Gamma_{(C,0)}$. When does the inequality occur? Does the bound hold when the tangent lines are counted with multiplicities?
- (5) (a) Consider the curve germ $(C, 0) = \{\prod_{\substack{i=1...r\\\alpha_i \neq \alpha_j}} (y^p \alpha_i x^q) = 0\}$. Apply the generic coordinate translations to all the

branches, to reach a curve whose components intersect only at smooth points and each such intersection point is a node. How many nodes you get?

- (b) Fix two smooth real germs, $(C_1, 0), (C_2, 0) \subset (\mathbb{R}^2, 0)$, with $i(C_1, C_2) = p > 1$. Can you decommstrate a real deformation, $C_1(\epsilon), C_2(\epsilon)$, that splits the intersection point at (0, 0) into p nodes? (Hint: fix p points on the \hat{x} -axis and force $C_1(\epsilon), C_2(\epsilon)$ to pass through them.)
- (6) (a) Given an isolated singularity (C, 0), fix some $Ball_{\delta}(0)$ and a deformation C_{ϵ} of C. Does there hold, for $|\epsilon| \ll 1$, $\mu(C, 0) = \sum_{pt \in C_{\epsilon} \cap Ball_{\delta}(0)} \mu(C_{\epsilon}, pt)$? (What is the difference between this formula and the one given in the class?)
 - (b) Let $f_1(x, y), f_2(x, y)$ be homogeneous polynomials of degrees d_1, d_2 , with no common factors. Compute $i(f_1, f_2)$.
 - (c) Let f(x, y) be a homogeneous polynomial of degree p, with no multiple factors. Prove: $\mu(f) = (p-1)^2$.
 - (d) Fix a (not necessarily homogeneous) polynomial f(x, y), of degree p. Suppose the curve $C = f^{-1}(0) \subset \mathbb{C}^2$ has an isolated singularity at the origin. Prove: $\mu(C, 0) \leq (p-1)^2$. (Hint: choose the generic coordinate axes, such that f(x, y) contains the monomials x^p , y^p . Present f as a deformation of some homogeneous polynomial of degree p.)