Introduction to Singularities, 201.1.0361 Homework 7
 Spring 2017 (D.Kerner)

(1) Getting used to the blowup $B l_{0}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2}$. In the last lecture(s) we spoke about the blowup of the complex plane. The following is meant to help to get used to this notion.
(a) Cover the complex projective line, $\mathbb{P}_{\mathbb{C}}^{1}$, by two charts, each isomorphic to \mathbb{C}^{1}. Fix the coordinates and write down the transition maps between the coordinates of the charts. (What is $\mathbb{P}_{\mathbb{C}}^{1}$ topologically?)
(b) Define the real projective line, $\mathbb{P}_{\mathbb{R}}^{1}$, similarly to $\mathbb{P}_{\mathbb{C}}^{1}$. Repeat the previous steps. (What is $\mathbb{P}_{\mathbb{R}}^{1}$ topologically?)
(c) Going along the same lines as on the lecture, define the real blowup, $B l_{0}\left(\mathbb{R}^{2}\right) \xrightarrow{\pi} \mathbb{R}^{2}$. Realize $B l_{0}\left(\mathbb{R}^{2}\right)$ as a subset in some real three-dimensional manifold (which one?) Cover $B l_{0}\left(\mathbb{R}^{2}\right)$ by two charts, each isomorphic to \mathbb{R}^{2}. Write down the transition functions. Prove that $B l_{0}\left(\mathbb{R}^{2}\right)$ is a smooth (connected) real surface. Prove that the exceptional locus of π is a compact connected real manifold (without boundary) of dimension one. What is this manifold?
Note: in both coordinate charts the defining equation of $B l_{0}\left(\mathbb{R}^{2}\right)$ resembles the one of the saddle point of calculus, e.g. $y=x \frac{\sigma_{y}}{\sigma_{x}}$. Use this to visualize $B l_{0}\left(\mathbb{R}^{2}\right)$.
(d) Given $B l_{0}\left(\mathbb{C}^{2}\right) \xrightarrow{\pi} \mathbb{C}^{2}$, prove that $\pi^{-1}(0)$ is a smooth compact complex curve. (Over reals this is a compact two-dimensional manifold, without boundary. What is this manifold?)
(e) Realize $B l_{0}\left(\mathbb{C}^{2}\right)$ as the closure of the graph of the map $\mathbb{C}^{2} \backslash\{(0,0)\} \xrightarrow{f} \mathbb{P}^{1}, f(x, y)=(x: y)$. Do the same for $B l_{0}\left(\mathbb{R}^{2}\right)$.
(f) Let l_{1}, l_{2} two (distinct) lines through the origin of \mathbb{R}^{2} or \mathbb{C}^{2}. What are their strict transforms, \tilde{l}_{1}, \tilde{l}_{2} ? Compare the intersection multiplicities $i\left(l_{1}, l_{2}\right), i\left(\tilde{l}_{1}, \tilde{l}_{2}\right)$.
(g) See also: https: //en.wikipedia.org/wiki/Blowing_up.
(2) (a) Consider the strict transform of the curve singularity $(C, 0)=\left\{x^{p}=y^{p}\right\} \subset\left(\mathbb{C}^{2}, 0\right)$ under the blowup $B l_{0}\left(\mathbb{C}^{2}\right) \xrightarrow{\pi}$ \mathbb{C}^{2}. Write down the defining equation(s) of the strict transform.
(b) Prove that an ordinary multiple point is resolvable by one blowup. (Namely, if the curve germ $(C, 0)$ consists of several smooth branches, pairwise non-tangent, then the strict transform under one blowup is a collection of smooth curve-germs, intersecting the exceptional divisor transversally.)
(c) Prove: the strict transform of the union of curves is the union of the strict transforms, $\left(\widetilde{\cup C_{i}, 0}\right)=\cup\left(\tilde{C}_{i}, 0\right)$.
(d) Given a branch $(C, 0)$, with tangent \hat{y}, and the parametrization $(x(t), y(t))$. Prove that the parametrization of \tilde{C} is $\left(x(t), \frac{y(t)}{x(t)}\right)$.
(e) Given two smooth curve germs, $\left(C_{1}, 0\right),\left(C_{2}, 0\right) \subset\left(\mathbb{C}^{2}, 0\right)$, with tangency of order k, i.e. $i_{0}\left(C_{1}, C_{2}\right)=k$. What is the minimal number of blowups needed to separate these curves?
(3) It was stated in the lecture that $B l_{0}\left(\mathbb{C}^{2}\right) \xrightarrow{\pi} \mathbb{C}^{2}$ does not depend on the local coordinates in $\left(\mathbb{C}^{2}, 0\right)$, up to isomorphism. More precisely, the statement is: any isomorphism of germs of complex smooth surfaces, $\left(\mathcal{U}_{1}, p t_{1}\right) \xrightarrow{\stackrel{\phi}{\rightarrow}}\left(\mathcal{U}_{2}, p t_{2}\right)$, lifts to an isomorphisms of the blowups. Namely, the diagram on the right commutes. Formulate the similar proposition over \mathbb{R} and prove it.

$$
\begin{array}{ccc}
B l_{p t_{1}}\left(\mathcal{U}_{1}, p t_{1}\right) & \xrightarrow{\sim} & B l_{p t_{2}}\left(\mathcal{U}_{2}, p t_{2}\right) \\
\downarrow & \stackrel{\phi}{\rightarrow} & \downarrow \\
\left(\mathcal{U}_{1}, p t_{1}\right) & \xrightarrow{\sim} & \left(\mathcal{U}_{2}, p t_{2}\right)
\end{array}
$$

(4) (a) Draw the embedded resolution of the singularities $y^{p}=x^{p}, y^{p}=x^{p k}, y^{p}=x^{p+1}$.
(b) Resolve the singularity $y^{5}+y^{2} x^{2}+x^{5}=0$ and compute its Milnor number.

