Introduction to Singularities, 201.1.0361 Homework 7 Spring 2017 (D.Kerner)

- (1) Getting used to the blowup $Bl_0(\mathbb{C}^2) \to \mathbb{C}^2$. In the last lecture(s) we spoke about the blowup of the complex plane. The following is meant to help to get used to this notion.
 - (a) Cover the complex projective line, $\mathbb{P}^1_{\mathbb{C}}$, by two charts, each isomorphic to \mathbb{C}^1 . Fix the coordinates and write
 - down the transition maps between the coordinates of the charts. (What is $\mathbb{P}^1_{\mathbb{C}}$ topologically?) (b) Define the real projective line, $\mathbb{P}^1_{\mathbb{R}}$, similarly to $\mathbb{P}^1_{\mathbb{C}}$. Repeat the previous steps. (What is $\mathbb{P}^1_{\mathbb{R}}$ topologically?)
 - (c) Going along the same lines as on the lecture, define the real blowup, $Bl_0(\mathbb{R}^2) \xrightarrow{\pi} \mathbb{R}^2$. Realize $Bl_0(\mathbb{R}^2)$ as a subset in some real three-dimensional manifold (which one?) Cover $Bl_0(\mathbb{R}^2)$ by two charts, each isomorphic to \mathbb{R}^2 . Write down the transition functions. Prove that $Bl_0(\mathbb{R}^2)$ is a smooth (connected) real surface. Prove that the exceptional locus of π is a compact connected real manifold (without boundary) of dimension one. What is this manifold?

Note: in both coordinate charts the defining equation of $Bl_0(\mathbb{R}^2)$ resembles the one of the saddle point of calculus, e.g. $y = x \frac{\sigma_y}{\sigma_x}$. Use this to visualize $Bl_0(\mathbb{R}^2)$. (d) Given $Bl_0(\mathbb{C}^2) \xrightarrow{\pi} \mathbb{C}^2$, prove that $\pi^{-1}(0)$ is a smooth compact complex curve. (Over reals this is a compact

- two-dimensional manifold, without boundary. What is this manifold?)
- (e) Realize $Bl_0(\mathbb{C}^2)$ as the closure of the graph of the map $\mathbb{C}^2 \setminus \{(0,0)\} \xrightarrow{f} \mathbb{P}^1$, f(x,y) = (x:y). Do the same for $Bl_0(\mathbb{R}^2).$
- (f) Let l_1, l_2 two (distinct) lines through the origin of \mathbb{R}^2 or \mathbb{C}^2 . What are their strict transforms, \tilde{l}_1, \tilde{l}_2 ? Compare the intersection multiplicities $i(l_1, l_2), i(\tilde{l}_1, \tilde{l}_2)$.
- (g) See also: https://en.wikipedia.org/wiki/Blowing_up.
- (a) Consider the strict transform of the curve singularity $(C,0) = \{x^p = y^p\} \subset (\mathbb{C}^2,0)$ under the blowup $Bl_0(\mathbb{C}^2) \xrightarrow{\pi} d$ (2) \mathbb{C}^2 . Write down the defining equation(s) of the strict transform.
 - (b) Prove that an ordinary multiple point is resolvable by one blowup. (Namely, if the curve germ (C, 0) consists of several smooth branches, pairwise non-tangent, then the strict transform under one blowup is a collection of smooth curve-germs, intersecting the exceptional divisor transversally.)
 - (c) Prove: the strict transform of the union of curves is the union of the strict transforms, $(\cup C_i, 0) = \cup (\tilde{C}_i, 0)$.
 - (d) Given a branch (C,0), with tangent \hat{y} , and the parametrization (x(t), y(t)). Prove that the parametrization of \tilde{C} is $(x(t), \frac{y(t)}{x(t)})$.
 - (e) Given two smooth curve germs, $(C_1, 0), (C_2, 0) \subset (\mathbb{C}^2, 0)$, with tangency of order k, i.e. $i_0(C_1, C_2) = k$. What is the minimal number of blowups needed to separate these curves?
- (3) It was stated in the lecture that $Bl_0(\mathbb{C}^2) \xrightarrow{\pi} \mathbb{C}^2$ does not depend on the local coordinates in $(\mathbb{C}^2, 0)$, up to isomorphism. More precisely, the statement is: any isomorphism of germs of complex $Pl = (\mathcal{U} = \mathsf{rt}) \xrightarrow{\sim} Pl = (\mathcal{U} = \mathsf{rt})$ $\begin{array}{cccc} Bl_{pt_1}(\mathcal{U}_1, pt_1) & \xrightarrow{\sim} & Bl_{pt_2}(\mathcal{U}_2, pt_2) \\ \downarrow & & \downarrow \\ (\mathcal{U}_1, pt_1) & \xrightarrow{\phi} & (\mathcal{U}_2, pt_2) \end{array}$ smooth surfaces, $(\mathcal{U}_1, pt_1) \xrightarrow{\frac{\varphi}{\sim}} (\mathcal{U}_2, pt_2)$, lifts to an isomorphisms of the blowups. Namely, the diagram on the right commutes. Formulate the similar proposition over \mathbb{R} and prove it.
- (4) (a) Draw the embedded resolution of the singularities $y^p = x^p$, $y^p = x^{pk}$, $y^p = x^{p+1}$. (b) Resolve the singularity $y^5 + y^2x^2 + x^5 = 0$ and compute its Milnor number.