LINEAR ALGEBRA FOR MECHANICAL ENGINEERING, SKETCHY SOLUTIONS OF THE MIDTERM, (09.06.2016)

(1) (a) Present the expression in the form $\frac{\left(\frac{2}{\sqrt{3}}\left(\cos \left(-\frac{\pi}{3}\right)+i \cdot \sin \left(-\frac{\pi}{3}\right)\right)\right)^{24}}{\left(\frac{2}{\sqrt{3}}\left(\cos \left(-\frac{\pi}{6}\right)+i \cdot \sin \left(-\frac{\pi}{6}\right)\right)\right)^{36}}$ and use the formula of de Moivre to get: $\left(\frac{2}{\sqrt{3}}\right)^{-12} \frac{(\cos (-8 \pi)+i \cdot \sin (-8 \pi))}{(\cos (-6 \pi)+i \cdot \sin (-6 \pi))}$. And the later expression equals $\left(\frac{3}{4}\right)^{6}$.
(b) Using $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$ one gets: $\operatorname{Span}_{\mathbb{R}}(\sin (x+1), \cos (x-1)) \ni \sin (x), \cos (x)$. Therefore $\operatorname{Span}_{\mathbb{R}}(\cos (x+\ln (2)), \sin (x+\sqrt{2}), \sin (x+1), \cos (x-1))=\operatorname{Span}_{R}(\sin (x), \cos (x))$.
Thus the needed dimension is 2 .
(2) (a) a. Bring the system to the canonical form. In terms of matrices after a few steps one has:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
a & b & c & b \\
a^{2} & b^{2} & c^{2} & a^{2}
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & b-a & c-a & b-a \\
0 & 0 & (c-a)(c-b) & a^{2}-b^{2}
\end{array}\right]
$$

Thus:

- if a, b, c are all distinct then there exist the unique solution.
- if ($c=a$ or $c=b$) but $a^{2} \neq b^{2}$ then there is no solution.
- if $a=b$ then there are infinity of solutions.
- if $-b=a \neq b$ and $(c-a)(c-b)=0$ then there is infinity of solutions.
(b) i. Note that the condition $C^{2} A B^{-2}=B A^{t} C$ is linear in A. (It is satisfied by the zero matrix. If A satisfies it then $\lambda \cdot A$ satisfies as well. If A, \tilde{A} satisfy it then $A+\tilde{A}$ satisfies it as well.) Therefore V is a vector subspace of $M_{3 \times 3}(\mathbb{R})$.
ii. If V is a vector subspace, then it must contain the zero vector of the ambient space. (Which is the "zero" sequence: $0,0,0, \ldots$) But the sequence of zeros does not converge to 1 . Therefore V does not contain the sequence of zeros, thus V is not a vector subspace.
(3) (a) Denote the columns of A by C_{1}, C_{2}, C_{3}. Then $M_{3 \times 3}^{u p}(\mathbb{C}) \cap V$ is the vector space of all the upper triangular matrices whose columns satisfy: $C_{1}+2 C_{2}+3 C_{3}=0$. Therefore the equations defining $M_{3 \times 3}^{u p}(\mathbb{C}) \cap V$ are: $a_{33}=0,2 a_{22}+3 a_{23}=0, a_{11}+2 a_{12}+3 a_{13}=0$. Thus a basis for $M_{3 \times 3}^{u p}(\mathbb{C}) \cap V$ is:

$$
\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
-3 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -3 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

(b) The assumptions imply: $\operatorname{Span}_{\mathbb{R}}\left(L_{1}, L_{2}\right) \ni(2,1),(1,2)$. The later vectors are linearly independent, thus $\operatorname{dimSpan} \mathbb{R}\left(L_{1}, L_{2}\right) \geq 2$. Therefore the rows L_{1}, L_{2} span the vector space \mathbb{R}^{2}. Thus (by the theorem of equivalent conditions for invertibility) A is invertible.
(4) (a) If $\operatorname{det}(A) \neq 0$ then the canonical form of A is the unit matrix, $\mathbb{I I}$. And the same for A^{t}. Thus both A and A^{t} are row-equivalent to the same matrix, hence they are row-equivalent.
(b) Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then $A^{t}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and the two matrices are not row-equivalent. (e.g. because $\operatorname{Span}(\operatorname{Row}(A))=\operatorname{Span}(0,1)$ but $\left.\operatorname{Span}\left(\operatorname{Row}\left(A^{t}\right)\right)=\operatorname{Span}(1,0).\right)$

