LINEAR ALGEBRA FOR MECHANICAL ENGINEERING, SKETCHY SOLUTIONS OF THE MIDTERM, (09.06.2016)

(1) (a) Present the expression in the form $\frac{\left(\frac{2}{\sqrt{3}}\left(\cos(-\frac{\pi}{3})+i\cdot\sin(-\frac{\pi}{3})\right)\right)^{24}}{\left(\frac{2}{\sqrt{3}}\left(\cos(-\frac{\pi}{6})+i\cdot\sin(-\frac{\pi}{6})\right)\right)^{36}}$ and use the formula of de Moivre to get: $\left(\frac{2}{\sqrt{3}}\right)^{-12}\frac{\left(\cos(-8\pi)+i\cdot\sin(-8\pi)\right)}{\left(\cos(-6\pi)+i\cdot\sin(-6\pi)\right)}.$ And the later expression equals $\left(\frac{3}{4}\right)^{6}$.

- (b) Using $sin(\alpha+\beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta)$ one gets: $Span_{\mathbb{R}}(sin(x+1), cos(x-1)) \ni sin(x), cos(x)$. Therefore $Span_{\mathbb{R}}(cos(x+ln(2)), sin(x+\sqrt{2}), sin(x+1), cos(x-1)) = Span_{\mathbb{R}}(sin(x), cos(x)).$ Thus the needed dimension is 2.
- (2) (a) a. Bring the system to the canonical form. In terms of matrices after a few steps one has:

1	1	1	1		[1	1	1	1	
a	b	c	b	$\sim \rightarrow$	0	b-a	c-a	b-a	
a^2	b^2	c^2	a^2		0	0	(c-a)(c-b)	$a^2 - b^2$	

Thus:

- if a, b, c are all distinct then there exist the unique solution.
- if (c = a or c = b) but $a^2 \neq b^2$ then there is no solution.
- if a = b then there are infinity of solutions.
- if $-b = a \neq b$ and (c a)(c b) = 0 then there is infinity of solutions.
- (b) i. Note that the condition $C^2AB^{-2} = BA^tC$ is linear in A. (It is satisfied by the zero matrix. If A satisfies it then $\lambda \cdot A$ satisfies as well. If A, \tilde{A} satisfy it then $A + \tilde{A}$ satisfies it as well.) Therefore V is a vector subspace of $M_{3\times 3}(\mathbb{R})$.

ii. If V is a vector subspace, then it must contain the zero vector of the ambient space. (Which is the "zero" sequence: $0, 0, 0, \ldots$) But the sequence of zeros does not converge to 1. Therefore V does not contain the sequence of zeros, thus V is not a vector subspace.

(3) (a) Denote the columns of A by C_1, C_2, C_3 . Then $M^{up}_{3\times 3}(\mathbb{C}) \cap V$ is the vector space of all the upper triangular matrices whose columns satisfy: $C_1 + 2C_2 + 3C_3 = 0$. Therefore the equations defining $M^{up}_{3\times 3}(\mathbb{C}) \cap V$ are: $a_{33} = 0, \ 2a_{22} + 3a_{23} = 0, \ a_{11} + 2a_{12} + 3a_{13} = 0$. Thus a basis for $M^{up}_{3\times 3}(\mathbb{C}) \cap V$ is:

$\left[-2\right]$	1	0]		$\left[-3\right]$	0	1]		0	0	0
0	0	0	,	0	0	0	,	0	-3	2.
0	0	0		0	0	0		0	0	0

- (b) The assumptions imply: $Span_{\mathbb{R}}(L_1, L_2) \ni (2, 1), (1, 2)$. The later vectors are linearly independent, thus $dim Span_{\mathbb{R}}(L_1, L_2) \geq 2$. Therefore the rows L_1, L_2 span the vector space \mathbb{R}^2 . Thus (by the theorem of equivalent conditions for invertibility) A is invertible.
- (4) (a) If $det(A) \neq 0$ then the canonical form of A is the unit matrix, **I**. And the same for A^t . Thus both A and A^t are row-equivalent to the same matrix, hence they are row-equivalent.
 - (b) Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then $A^t = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and the two matrices are not row-equivalent. (e.g. because Span(Row(A)) = Span(0,1) but $Span(Row(A^t)) = Span(1,0).$