LINEAR ALGEBRA FOR MECHANICAL ENGINEERING, SKETCHY SOLUTIONS OF MOED.B, (9.08.2016)

(1) (a) Solution 1. The geometric meaning of $|z-1+i|$ is the distance between the points $z, 1-i$. Thus the condition $|z-1+i|=|z+1-i|$ means: the point $z=x+i y$ is equidistant to the points $(1-i)$ and $(i-1)$. Or, in terms of \mathbb{R}^{2}, the point (x, y) is equidistant to the points $(1,-1),(-1,1)$. But this means: z lies on the line $\{x=y\} \subset \mathbb{R}^{2}$. All the points of this line satisfy this equation.

Solution 2. Square both parts and use $|z|^{2}=z \bar{z}$ to get: $(z-1+i)(\bar{z}-1-i)=(z+1-i)(\bar{z}+1+i)$. Open the brackets and move the right hand side to the left hand side to get: $2(\bar{z}(i-1)+z(-1-i))=0$. Present $z=x+i y$, then the condition is: $y=x$.
(b) Let $A=B=\mathbb{O}$ then the condition means: $(-\lambda)^{n}=(-\lambda)^{n}(-\lambda)^{n}$. And this does not hold for $\lambda \neq \pm 1$.
(2) (a) The condition $p(-x)=p(x)$ means that any element of V is an even function, thus it contains only the even powers of x. Therefore $V \subseteq \operatorname{Span}\left(1, x^{2}, x^{4}, \ldots, x^{10}\right)$.
The condition $p(0)=0$ means that the free coefficient of this polynomial vanishes. The condition $p^{\prime}(0)=0$ is then satisfied. Therefore a basis for V is $\left(x^{2}, x^{4}, x^{6}, x^{8}, x^{10}\right)$, in particular $\operatorname{dim}(V)=5$. Thus a complementary subspace can be chosen as $\operatorname{Span}\left(1, x, x^{3}, x^{5}, x^{7}, x^{9}\right)$, and these vectors form its basis.
(b) Use the presentation $\hat{x}=(1,0)=\frac{2(2,1)-(1,2)}{3}, \hat{y}=(0,1)=\frac{-(2,1)+2(1,2)}{3}$ to get:

$$
<\hat{x}, \hat{y}>=<\frac{2(2,1)-(1,2)}{3}, \frac{-(2,1)+2(1,2)}{3}>=-\frac{4}{9} .
$$

(3) (a) As V is finite dimensional we can use the comparison of dimensions: $\operatorname{dim}(\operatorname{Im}(T))+\operatorname{dim}(\operatorname{ker}(T))=$ $\operatorname{dim}(V)$. As $\operatorname{Im}(T)=V$ we get $\operatorname{dim}(\operatorname{ker}(T))=0$, i.e. $\operatorname{ker}(T)=\{0\}$. Therefore T is injective.
(b) As T is surjective and injective, it is invertible. Thus $T^{2}=T$ implies: $T=T^{-1} \circ T^{2}=T^{-1} \circ T=I d$.
(4) (a) Note that $T(1,0)=(0,-1)$ and $T(0,1)=(-1,0)$, thus $[T]_{E}=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$. The presentation matrix of the projection is $[S]_{E}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Therefore $[S \circ T]_{E}=[S]_{E}[T]_{E}=\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]$.
(b) The characteristic polynomial of $[S \circ T]_{E}$ is: $\operatorname{det}\left(x \mathbb{I}-[S \circ T]_{E}\right)=x^{2}$. Thus the only eigenvalue is $\lambda=0$, its algebraic multiplicity is 2 . The corresponding eigenvectors are the solutions of the system $[S \circ T]_{E} v=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The space of the solutions is spanned by just one vector, $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so the geometric multiplicity is one. In particular the geometric multiplicity is smaller than the algebraic multiplicity. Therefore the map $S \circ T$ is non-diagonalizable.

