LINEAR ALGEBRA FOR MECHANICAL ENGINEERING, SKETCHY SOLUTIONS OF MOED.C, (15.09.2016)

(1) (a) Present the initial expression as follows: $\sqrt{1-i \sqrt{3}}=\sqrt{2} \sqrt{\cos \left(-\frac{\pi}{3}\right)+i \cdot \sin \left(-\frac{\pi}{3}\right)}$.

By de Moivre formula we have: $\left(\cos \left(-\frac{\pi}{6}\right)+i \cdot \sin \left(-\frac{\pi}{6}\right)\right)^{2}=\cos \left(-\frac{\pi}{3}\right)+i \cdot \sin \left(-\frac{\pi}{3}\right)$. Therefore

$$
\sqrt{\cos \left(-\frac{\pi}{3}\right)+i \cdot \sin \left(-\frac{\pi}{3}\right)}= \pm\left(\cos \left(-\frac{\pi}{6}\right)+i \cdot \sin \left(-\frac{\pi}{6}\right)\right) .
$$

Therefore $\sqrt{1-i \sqrt{3}}= \pm \frac{\sqrt{3}-i}{\sqrt{2}}$.
(b) Apply Gauß algorithm to bring A to the canonical form, $A \rightsquigarrow\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$. Therefore $\operatorname{ker}(A)$ is spanned by $(1,-2,1)$. Thus $\operatorname{dim}\left(\operatorname{ker}\left(T_{A}\right) \cap \operatorname{Im}\left(T_{A}\right)\right) \leq 1$, and this dimension is 1 if and only if the kernel vector $(1,-2,1)$ is a linear combination of the columns of A. One way to check this is to consider the "extended" matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 4 & 5 & 6 & -2 \\ 0 & -3 & -6 & 1\end{array}\right]$ and to check its column rank. By the direct check, the rank of this matrix is three, thus $(1,-2,1)$ is linearly independent of the columns of A. Thus $\operatorname{ker}\left(T_{A}\right) \cap \operatorname{Im}\left(T_{A}\right)=\{0\}$, hence $\operatorname{dim}\left(\operatorname{ker}\left(T_{A}\right) \cap \operatorname{Im}\left(T_{A}\right)\right)=0$.
(2) (a) We have: $T\left(\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\right)=\left[\begin{array}{cc}a_{11}-a_{22} & 0 \\ 0 & a_{22}-a_{11}\end{array}\right]$. Therefore

$$
\operatorname{ker}(T)=\left\{\left.\left[\begin{array}{cc}
a & a_{12} \\
a_{21} & a
\end{array}\right] \right\rvert\, a, a_{12}, a_{21} \in \mathbb{C}\right\}, \quad \operatorname{Im}(T)=\operatorname{Span}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right) .
$$

(b) By definition, $\left.T\right|_{\operatorname{ker}(T)}=\mathbb{O}$, i.e. $\operatorname{ker}(T)$ is an eigenspace. Furthermore, for any $A \in \operatorname{Im}(T)$ one has: $T(A)=$ $2 A$. Thus $\operatorname{Im}(T)$ is an eigenspace that corresponds to the eigenvalue 2. Finally, $M_{2 \times 2}(\mathbb{C})=\operatorname{ker}(T) \oplus \operatorname{Im}(T)$. Therefore T is diagonalizable. An example of diagonalizing basis is:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

The presentation matrix of T in this basis T is: $\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.
(3) By the assumptions we have: $\operatorname{dim}\left(V_{1}\right)=1=\operatorname{dim}\left(V_{2}\right)$. Therefore $\operatorname{dim}\left(V_{1} \cap V_{2}\right) \leq 1$, and the inequality can be strict. For example, let $V=\operatorname{Span}\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right), V_{1}=\operatorname{Span}(0,0,0,1)$, while $V_{2}=\operatorname{Span}(1,0,0,1)$. Then $V_{1} \cap V_{2}=\{0\}$.

Finally, we use the theorem on dimensions, $\operatorname{dim}(V+W)=\operatorname{dim}(V)+\operatorname{dim}(W)-\operatorname{dim}(V \cap W)$, to get: $\operatorname{dim}\left(V_{1}+\right.$ $\left.V_{2}\right) \leq 2$.
(4) (a) By its definition $V=\operatorname{Span}\left(1, x^{3}\right)$. Therefore, to find an orthonormal basis, it is enough to apply GramSchmidt process to the vectors $1, x^{3} \in V$. Note that $\int_{-1}^{1} 1 \cdot x^{3} d x=0$, i.e. the vectors are already orthogonal. Thus it is enough to normalize them. As $\int_{-1}^{1} 1 d x=2, \int_{-1}^{1} x^{3} d x=\frac{2}{7}$, the orthonormal basis of V is: $v_{1}=\frac{1}{\sqrt{2}}$, $v_{2}=\frac{x^{3}}{\sqrt{2 / 7}}$.
(b) By its definition $W=\left\{\left.\left[\begin{array}{cc}a & a_{12} \\ a_{21} & -a\end{array}\right] \right\rvert\, a, a_{12}, a_{21} \in \mathbb{R}\right\}$. Thus $\operatorname{dim}(W)=3$ and $\operatorname{dim}\left(W^{\perp}\right)=1$, i.e. W^{\perp} is spanned by just one vector. To find this vector one can, e.g. fix a simple basis of W :

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Suppose $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right] \in W^{\perp}$, then the conditions $\operatorname{trace}\left(A_{1} B^{t}\right)=0=\operatorname{trace}\left(A_{2} B^{t}\right)=\operatorname{trace}\left(A_{3} B^{t}\right)$ imply: $b_{12}=0=b_{21}=b_{11}-b_{22}$. Therefore B is a multiple of the unit matrix. Thus a basis for W^{\perp} is $\mathbb{I}_{2 \times 2}$.

