INTRODUCTION TO TOPOLOGY, SKETCHY SOLUTIONS OF MOED.B, (29.07.2016)

(1) (a) Consider the projection $X \times Y \xrightarrow{\pi_{X}} X$. Its restriction $\Gamma_{f} \xrightarrow{\pi_{X}} X$ is a bijection of sets and is continuous. The inverse of π_{X} is $X \xrightarrow{(I d, f)} \Gamma_{f}$, also continuous, thus π_{X} is a homeomorphism.
(b) Examples with f discontinuous but Γ_{f} connected:
$\cdot[0,1] \xrightarrow{f} \mathbb{R}, f(x)=\left\{\begin{array}{l}\sin \frac{1}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$.

- $\mathbb{R}^{2} \backslash(0,0) \xrightarrow{f}[0,2 \pi], f(x, y)=\phi$ (the angle in the polar coordinates).
- $S^{1} \rightarrow[0,2 \pi), z \rightarrow \frac{1}{2 \pi i} \ln (z)$.
(2) (a) f is continuous at $x \in X$ iff $f_{A}^{-1}\left(f_{A}(x)\right)$ contains an open neighborhood of x. Therefore f is continuous at $x \in A$ iff $x \in \operatorname{Int}(A)$. Similarly, f_{A} is continuous at $x \in X \backslash A$ iff $x \in \operatorname{Int}(X \backslash A)$. Therefore the set of discontinuity points of f_{A} is: $\bar{A} \backslash \operatorname{Int}(A)=\partial(A)$.
(b) The space $(0,1)$ (with the ordinary topology) satisfies the conditions, but is non-complete.
(3) (a) First note that f is continuous.

Solution 1.
Consider the function $g(x)=d(x, f(x))$. This function is continuous (the metric is continuous, as was shown in the class), thus achieves its infimum on the compact space X at some point, say x_{0}. If $\operatorname{in} f_{x \in X}(g(x))=0$ then $d\left(x_{0}, f\left(x_{0}\right)\right)=0$, i.e. $f\left(x_{0}\right)=x_{0}$. If $\inf f_{x \in X}(g(x))>0$ then $d\left(x_{0}, f\left(x_{0}\right)\right)>d\left(f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right)\right)$, which is a contradiction.
Solution 2.
Denote $A=\bigcap_{n=1}^{\infty} f^{(n)}(X)$, this is non-empty being the intersection of closed sets. We claim: $f(A)=A$. The part $f(A) \subseteq A$ is obvious. For the other part fix any $a \in A$, so that for any n holds: $a=f^{(n)}\left(x_{n}\right)$, for some $x_{n} \in X$. But then $a=f\left(f^{(n-1)}\left(x_{n}\right)\right)$, i.e. $a \in f\left(\cap f^{n-1}(X)\right)=f(A)$.
Now we claim: $\operatorname{diam}(A)=0$. Suppose $\operatorname{diam}(A)>0$. Note that $A \subset X$ is compact, being the intersection of compact subsets. Then exist $a_{1}, a_{2} \in A$ such that $d\left(a_{1}, a_{2}\right)=\operatorname{diam}(A)$. But then $d\left(f\left(a_{1}\right), f\left(a_{2}\right)\right)<d\left(a_{1}, a_{2}\right)$. As this hods for any pairs of points realizing the distance $\operatorname{diam}(A)$, we get: $\operatorname{diam}(f(A))<\operatorname{diam}(A)$, contradicting $f(A)=A$.
Thus $\operatorname{diam}(A)=0$, hence A has precisely one point, $A=\{a\}$. But then $f(a)=. a$
(b) Solution 1. Suppose the south pole of the sphere is not covered by γ. Fix the polar coordinates, $\phi \in[0, \pi]$, $\theta \in[0,2 \pi)$ and define the homotopy $\left(\phi_{t}, \theta_{t}\right)=((1-t) \cdot \phi, \theta)$. It contracts $S^{2} \backslash\{$ south pole $\}$ to one point (the north pole). In particular it contracts the loop γ.
Solution 2. Note that $S^{2} \backslash\{p t\} \approx \mathbb{R}^{2}$. Therefore $\pi_{1}\left(S^{2} \backslash\{p t\}\right)=\pi_{1}\left(\mathbb{R}^{2}\right)=\{1\}$. Thus every loop in $S^{2} \backslash\{p t\}$ is contractible.
(4) (a) \Rightarrow Fix some open subset $\mathcal{U} \subseteq[0,1]$ and suppose at most a finite number of $\left\{\gamma_{\alpha}\right\}$ is non-constant on \mathcal{U}. Then for any $t \in \mathcal{U}$ and for any basic open neighborhood $\prod_{\alpha \in A} \mathcal{V}_{\alpha}$ of $\left\{\gamma_{\alpha}(t)\right\} \in \prod_{\alpha \in A} \mathbb{R}$ the preimage, $\left\{\gamma_{\alpha}\right\}^{-1}\left(\prod_{\alpha \in A} \mathcal{V}_{\alpha}\right)=$ $\cap_{\alpha \in A} \gamma_{\alpha}^{-1}\left(\mathcal{V}_{\alpha}\right)$, is a finite intersection of open subsets of $[0,1]$, hence is open. Thus $\left\{\gamma_{\alpha}\right\}$ is continuous at t (in the box topology).
\Leftarrow Suppose the condition on $\left\{\gamma_{\alpha}\right\}$ does not hold, i.e. for some point $t_{0} \in[0,1]$ and some converging sequence $t_{0} \leftarrow t_{k} \in[0,1]$ there exists a sequence of indices, $\left\{\alpha_{k}\right\}$ for which holds: $\gamma_{\alpha_{k}}\left(t_{0}\right) \neq \gamma_{\alpha_{k}}\left(t_{k}\right)$. Take the neighborhoods $t_{0} \in \mathcal{U}_{\alpha_{k}} \not \supset t_{\alpha_{k}}$ and the basic open set $\left(\prod_{k} \gamma_{\alpha_{k}}\left(\mathcal{U}_{\alpha_{k}}\right)\right) \times\left(\prod_{\alpha \in A \backslash\left\{\alpha_{k}\right\}} \mathbb{R}\right)$. Then the preimage $\left\{\gamma_{\alpha}\right\}^{-1}\left(\left(\prod_{k} \gamma_{\alpha_{k}}\left(\mathcal{U}_{\alpha_{k}}\right)\right) \times\left(\prod_{\alpha \in A \backslash\left\{\alpha_{k}\right\}} \mathbb{R}\right)\right) \subset[0,1]$ contains t_{0} but does not contain any of the points t_{k}. Thus t_{0} does not lie in the interior of $\left\{\gamma_{\alpha}\right\}^{-1}\left(\left(\prod_{k} \gamma_{\alpha_{k}}\left(\mathcal{U}_{\alpha_{k}}\right)\right) \times\left(\prod_{\alpha \in A \backslash\left\{\alpha_{k}\right\}} \mathbb{R}\right)\right) \subset[0$, 1], i.e. this preimage does not contain any open neighborhood of t_{0}. But then the map $\left\{\gamma_{\alpha}\right\}$ is not continuous at t_{0}.
(b) It is enough to prove that all the basic open sets are not path-connected. Fix some basic open $\prod_{\alpha \in A} \mathcal{U}_{\alpha}$, and choose some points $\left\{x_{\alpha}\right\},\left\{y_{\alpha}\right\}$ with the condition: $x_{\alpha} \neq y_{\alpha}$ for infinity of values of α. We prove that there does not exists a path from $\left\{x_{\alpha}\right\}$ to $\left\{y_{\alpha}\right\}$.
Indeed, any such path is a continuous map $\left\{\gamma_{\alpha}\right\}$ satisfying: $\left\{\gamma_{\alpha}(0)\right\}=\left\{x_{\alpha}\right\}$ and $\left\{\gamma_{\alpha}(1)\right\}=\left\{y_{\alpha}\right\}$. By the part 4.a, for any t_{0} there exists a neighborhood $t_{0} \in \mathcal{V}_{t_{0}} \subseteq[0,1]$ on which at most a finite number of γ_{α} are non-constant. We cover $[0,1]$ by such neighborhoods. Using the compactness of $[0,1]$ we choose a finite subcover, $[0,1]=\cup_{i} \mathcal{V}_{i}$.
But then for the points $\left\{x_{\alpha}\right\},\left\{y_{\alpha}\right\}$ at most finite number of coordinates can differ. This brings the contradiction.

