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INTRODUCTION TO TOPOLOGY,
SKETCHY SOLUTIONS OF MOED.A, (08.07.2016)

(1) (a) Draw X C R2?, in the z,y coordinates this is a neighborhood of the spiral {r = e?, ¢ € (—o0,00)}.

In the 7, ¢ coordinates this is an infinite strip whose width tends to zero as ¢ — —oo and tends to
infinity as ¢ — co.

Define the map X EN (=1,1) xR by f(r,¢) = (100 T;§¢ ,®). This map is continuous, injective and (by
direct check) surjective. Its inverse is continuous as well, thus f is a homeomorphism. Finally, using

hom homeo

(0,1) "R we get: X~ R2.

Suppose (X, d) is countable, we show that X is non-connected. Fix some point zy € X and a number

< diam(X) gch that for any other point z € X: d(xo,x) # r. (Such r exists because X is countable.)
Then the open ball Ball,(z¢) does not contain the whole X and no points of X belong to the boundary
of Ball,(x¢). Further, the subset Us, = {z| d(z,z¢) > r} is non-empty and open. Thus we get a
separation into the disjoint open subsets X = Ball,.(z9) [[Us,. This means X is non-connected,
giving a contradiction.

Another solution. Fix any two points x1, 2o € X and take a path v from 1, x5. This is a compact

subset of a metric space, in particular Hausdorff. As has been proved in a lecture: ”a compact
Hausdorff space with no isolated points is uncountable”.
Another solution. Fix any two points z1,z2 € X and take a path v from z1,z9. Consider the

function ~ digt R, defined by dist(x) = d(z1,x). This function is continuous and dist(z1) = 0 #
dist(zg). Its image contains the interval [0, dist(z2)] C R. (Suppose [0, dist(z2)] 3 ¢ € dist(vy), then
dist=1]0,c) [[ dist~!(c, dist(z2)] is a separation of 7 into disjoint open subsets.) Thus v must have at
least a continuum of points.

(2) Let {[0, 1] Iy R} be a Cauchy sequence for the metric d. For each x € X the sequence of points

(3)

{fn(

x) € R} converges, by the completeness of R. Define the function f pointwise, f(z) = lim f, ().

We claim that the convergence f, — f is not just pointwise, but uniform. This follows immediately by
the form of the metric. Finally, as the convergence is the uniform, the limit f is a continuous function (as
has been proved in Infi). Therefore (X, d) is complete.

(a)

By Tychonoff’s theorem the space [] S™ is compact in the product topology. For each « the im-
age fo(SY) C J] S™is a compactﬁ esﬁbset (being a continuous image of a compact space). Thus
fa(SYH) c T1I g’iBis a closed subset. Therefore we have a collection of closed subsets, {f,(S!) C
I S"}aej,ei/ith the property of non-empty finite intersections. Thus, by compactness of [[ S™,
fﬁf total intersection is non-empty. er

We construct the needed compactification as the closure, I'f, of the graph of a map X EN [0,1]2.

Present (0,1] = :L:jl[n%_l,%] and define f on each [%_H, 1] as the Peano curve. More precisely:

f\[%,i] is the Peano curve that begins at the point (n mod(2),0) € [0,1]? and ends at the point
(n + 1 mod(2),0) € [0,1]2. By the construction these maps glue to a continuous map X ER [0, 1]2.
This map is surjective on each segment [%H, %]7 therefore the set of partial limits of f(¢) as t — 0 is

precisely [0, 1]2.

Finally, X C R3, in particular it is Hausdorff.

Another version of f. Define the map (0, 1] EN [0,1]2 by f(z) = (|sini], |sm\/g|) Check this map

on the intervals [t%, ﬁ], as t — 0o, while 0 < ¢ is small, but fixed. On each such interval the ¥

coordinate changes slightly, while the y; coordinate oscillates.
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(4) We claim that in both cases all the loops are contractible and therefore 7y (..) = {1}.
As R?\ (...) is connected, it is enough to consider the loops based at e.g. (1,0,0).

(a)

Apply the homotopy (R?\ (0,0,0)) x [0,1] P ps \ (0,0,0) defined in polar coordinates by
o(t)=¢, 0()=0, rt)=r(l-1t)+t

This homotopy pushes every loop in R3\ (0,0,0) to a loop on S%2. (Note that the base point,
(1,0,0) € S?%, remains fixed.) And any loop on the sphere is contractible, as has been shown in
the class/homeworks.

Fix some loop v C R*\ {(0,0,1),(0,0,-1)}, defined by [0, 1] 4, 3 \ {(0,0,1),(0,0,—1)}, f(0) =
f(1) =(1,0,0).

First we construct the homotopy that pushes-out v to the cylinder {z? + y? = 1} C R3.

e If 7y does not cross the 2-axis then the homotopy is induced by the homotopy R? \ (0,0) ~ S!,
(r,¢) = (r(L=1t) +1t,9).

e In the general case one considers a small punctured cylinder D? x (—o0,0] \ (0,0, —1) and its
preimage f~(D? x (—00,0]\ (0,0, —1)). The later is an open subset of [0, 1], hence splits into
the union U(a;, b;). On each (a;,b;) one deforms f slightly, so that the deformed path does not
cross the 2-axis. Do the same for the cylinder D? x [0,00) \ (0,0, 1) Then apply the homotopy
as above.

Now we get a loop on the cylinder d(D?) x R, which can be shrank into a loop inside the circle
{z=0, 22 +y? =1} CR%.
Finally, we contract this circle to the point (1,0, 0).

Another version of homotopy. As v does not pass through the points (0,0, 1), (0,0, —1) it has a positive

distance from both of them. Thus take small spheres centered at each of these points and inflate them
up to radius 1. This pushes any loop inside R? \ {(07 0,1),(0,0, —1)} to a loop inside

R*\ {Ball;(0,0,1) U Ball;(0,0,-1)}.
Now, if the loop passes through the point (0,0,0), it can be moved off this point. After this the

loop can be pushed off the ball Ball;(0,0,0). Thus we get a loop inside R? \ Ball;(0,0,0) and this is
contractible as in part a.



