Introduction to Topology, 201.1.0091 Homework 11

Spring 2016 (D.Kerner)

(2)

i.

- (1) (a) Given a surjective map, $(X, \mathcal{T}_X) \xrightarrow{p} Y$, define $\mathcal{T}_Y = \{\mathcal{U} | p^{-1}(\mathcal{U}) \in \mathcal{T}_X\}$. Check that \mathcal{T}_Y is a topology. Prove that \mathcal{T}_Y is the coarsest topology for which p is a quotient map.
 - (b) Given a homeomorphism $X \xrightarrow{f} Y$ and an equivalence relation \sim on X. Prove the homeomorphism $X/_{\sim} \approx Y/_{f(\sim)}$.
 - (c) Let Y be a (topological) quotient of X. Prove/disprove: if X is Hausdorff/connected/path-connected/compact then Y is Hausdorff/connected/path-connected/compact.
 - (a) Construct the quotient map from [0,1] onto every (capital) letter of Latin alphabet.
 - (b) Prove that every finite connected graph can be obtained as a quotient space of [0, 1].
 - (c) Construct the homeomorphism $D^n/S^{n-1} \xrightarrow{\sim} S^n$ (here D^n is the closed disc whose boundary is S^{n-1}).
 - (d) Prove that the following spaces are homeomorphic (here X/A denotes the contraction of A to a point): \mathbb{R}^2 , $\mathbb{R}^2/Ball_r(0,0)$, $\mathbb{R}^2/[0,1] \times [0,1]$, $\mathbb{R}^2/[0,1] \times \{0\}$, $\mathbb{R}^2/star$ (here $star \subset \mathbb{R}^2$ is a wedge of a finite number of straight segments), $\mathbb{R}^2/chain$ (here $chain \subset \mathbb{R}^2$ is a finite bounded piecewise linear path with no self-crossings and repetitions).
 - (e) Are the spaces \mathbb{R}^2 , $\mathbb{R}^2/_{ray}$ homeomorphic? (Here $ray \subset \mathbb{R}^2$ is e.g. $\{y = 0, x \ge 0\}$).
 - (f) Describe the quotients of \mathbb{R}^2 by the following equivalences: i. $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = x_2$. ii. $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 + y_1^2 = x_2 + y_2^2$. iii. $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 + y_1^2 = x_2^2 + y_2^2$. (g) Fix *n* non-intersecting circles on S^2 . Identify the space obtained by contracting these circles to one point.
- (a) Identify the following quotients (write down the explicit subdivision of $[0,1]^2$ in each case) (3)

$$\begin{array}{c} [0,1]^2 / ((0,t) \sim (1,t), \ \forall \ t \in 0,1]), \quad \text{ii. } [0,1]^2 / ((0,t) \sim (1,1-t), \ \forall \ t \in 0,1]), \quad \text{iii. } [0,1]^2 / (\overset{(0,t) \sim (1,t)}{(t,0) \sim (t,1)}, \ \forall \ t \in 0,1]) \\ \text{lonitfy the surface } S \subset \mathbb{R}^3 \text{ defined as the image of } [0,2\pi] \times [-1,1] \text{ by} \end{array}$$

- (b) Idenity the surface $S_n \subset \mathbb{R}^3$ defined as the image of $[0, 2\pi] \times [-1, 1]$ by $(x(\phi,t),y(\phi,t),z(\phi,t)) = \left((R+t \cdot \cos(\frac{n\phi}{2}))\cos(\phi), (R+t \cdot \cos(\frac{n\phi}{2}))\sin(\phi), t \cdot \sin(\frac{n\phi}{2}) \right). \quad (\text{Here } R > 1 \text{ and } n \in \mathbb{C}$ $\mathbb{Z}_{>0}$ are fixed.) Prove that all $\{S_n\}_{n \in \mathbb{2N}}$ are homeomorphic and all $\{S_n\}_{n \in \mathbb{2N}+1}$ are homeomorphic. (Here the homeomorphisms are of surfaces only, not of their embeddings.)
- (4) (a) Given X with two equivalences, $\stackrel{1}{\sim}$, $\stackrel{2}{\sim}$, prove: $X/(\stackrel{1}{\sim},\stackrel{2}{\sim}) \xrightarrow{X} X/\stackrel{1}{\sim}/\stackrel{2}{\sim}/\stackrel{1}{\sim}$. (Here the equivalences $(\stackrel{1}{\sim},\stackrel{2}{\sim})$, $\stackrel{2}{\sim}/\stackrel{1}{\sim}$ were defined in the class.)
 - (b) Prove that the Klein bottle can be obtained (in a double quotient way) by either gluing the boundary of Moebius strip or gluing the (twisted) boundary of a cylinder.
- (5) Prove that the spaces $D^2/((x,y) \sim (-x,y))$, $D^2/((x,y) \sim (-x,-y))$ are homeomorphic to D^2 . What is the generalization to D^n ?
- (6)(a) Prove that the following is an equivalent definition of quotient map:

 $X \xrightarrow{p} Y$ is a quotient map if: $V \subset Y$ is closed iff $p^{-1}(V) \subset X$ is closed.

- (b) Recall: a continuous map $X \xrightarrow{f} Y$ is open (closed) if f(open) = open (or f(closed) = closed). Is the projection onto x-axis, $\mathbb{R}^2 \xrightarrow{\pi_x} \mathbb{R}$, a closed map? Is the embedding of x-axis, $\mathbb{R} \xrightarrow{i} \mathbb{R}^2$, an open map?
- (c) Prove that an open/closed map is always a quotient map. Give an example of quotient map which is neither closed nor open.
- (d) Given a quotient map, $X \xrightarrow{p} Y$, and a saturated subset $A \subset X$ (i.e. $p^{-1}p(A) = A$). Suppose: either A is open/closed or p is open/closed. Prove that $A \xrightarrow{p|_A} p(A)$ is a quotient map. (Without the assumptions on p or A the map $p|_A$ is not necessarily quotient, see Munkres §22.)
- (e) Given a quotient map $X \xrightarrow{p} Y$ and some other map $X \xrightarrow{f} Z$ prove: "f descends to Y" (i.e. exists $Y \xrightarrow{p_*f} Z$ satisfying: $(p_*f) \circ p = f$ iff f is constant on the fibres of p, i.e. if $p(x_1) = p(x_2)$ then $f(x_1) = f(x_2)$.
- (f) Construct the quotient map from [0,1] onto $[0,1]^2$. (Hint: prove that Peano curve is defined by closed map.)
- (7) Let G be a topological group (a group which is a T_1 -topological space and such that the product and the inverse operations are continuous).
 - (a) Check that the group $(\mathbb{C}, +)$ is a topological group (for the standard topology) and $(\mathbb{Z}, +) \subset (\mathbb{Q}, +) \subset (\mathbb{R}, +) \subset$ $(\mathbb{C}, +)$ are topological subgroups (for the induced topology).
 - (b) Let $\mathbb{k} = \mathbb{R}, \mathbb{C}$ with the standard topology. The isomorphism of vector spaces $Mat_{n \times n}(\mathbb{k}) \approx \mathbb{k}^{n^2}$ defines the topology on $Mat_{n \times n}(\mathbb{k})$. Check that the following groups are topological (with the topology induced from $Mat_{n \times n}(\mathbb{k})$): $GL_n(\mathbf{k}), O(n), SO(n), U(n), SU(n)$. Are they connected/compact?
 - (c) Which of the following subgroups of \mathbb{R} are closed subsets: $\mathbb{Z}, \sqrt{2} \cdot \mathbb{Z}, \mathbb{Z} + \sqrt{2} \cdot \mathbb{Z}$?
 - (d) Prove that for any $a \in G$ the maps $G \xrightarrow{\phi_a, \psi_a, \tau_a} G$, $\phi_a(x) = a^{-1}x$, $\psi_a(x) = xa$, $\tau_a(x) = a^{-1}xa$ are homeomorphisms. Moreover, τ_a is a group isomorphism.
 - (e) Prove that for any subgroup $H \subset G$ the closure $\overline{H} \subseteq G$ is also a topological subgroup.
 - (f) Fix a subgroup $H \subset G$ and consider the set of left cosets, $\{xH\}_{x \in G}$. Denote it by G/H and give it the quotient topology. Show that the quotient map $G \to G/_H$ is open. Show that the one-point sets of $G/_H$ are closed iff H is closed.
 - (g) Show that if $H \subset G$ is a normal subgroup then $G/_H$ is a topological group. What are $(\mathbb{R}, +)/(\mathbb{Z}, +)$, $(\mathbb{R}^n, +)/(\mathbb{Z}^n, +)$?

