Introduction to Topology, 201.1.0091 Homework 12

Spring 2016 (D.Kerner)

- (1) (a) Construct an explicit homotopy from $a(ny) \max [0, 1] \xrightarrow{f} [0, 1]$ satisfying f(0) = 0, f(1) = 1 to the identity map, Id(x) = x.
 - (b) Construct an explicit homotopy between any two paths $[0,1] \xrightarrow{f,g} \mathbb{R}^2$ connecting (-1,0) to (1,0).
 - (c) Prove that path homotopy (in arbitrary topological space) is an equivalence relation.
 - (d) Prove that the product of homotopy types of paths, $[f] \cdot [g] = [f \star g]$, is well defined.
 - (e) Denote by e_{x_0} , e_{x_1} the constant paths at x_0, x_1 . For a path f from x_0 to x_1 prove that $e_{x_0} \star f \sim f$ and $f \star e_{x_1} \sim f$. (Note that $e_{x_0} \star f \neq f$ and $f \star e_{x_1} \neq f$.)
 - (f) Given the paths $[0,1] \xrightarrow{f,g,h} X$ such that f(1) = g(0) and g(1) = h(0) prove: $[f \star (g \star h)] = [(f \star g) \star h]$. (Note that $f \star (g \star h) \neq (f \star g) \star h$.)
 - (g) Given a path f from x_0 to x_1 define $f^{-1}(s) = f(1-s)$. Prove: $f \star f^{-1} \sim e_{x_0}$ and $f^{-1} \star f \sim e_{x_1}$. (Do the equalities hold here?)
 - (h) Suppose the maps $X \xrightarrow{f,f'} Y$ are homotopic and the maps $Y \xrightarrow{g,g'} Z$ are homotopic. Construct an explicit homotopy of the maps $g \circ f, g' \circ f'$.
- 2) (a) Prove that every loop in S^n that misses at least one point (i.e. is non-surjective), is contractible. (Construct an explicit homotopy to the constant loop.)
 - (b) Prove: for any map $[0,1] \xrightarrow{f} S^{n>1}$ there exists a subdivision $0 = s_0 < s_1 < \cdots < s_N = 1$ such that each path $[s_i, s_{i+1}] \xrightarrow{f} S^n$ is homotopic to an arc connecting the points $f(s_i), f(s_{i+1})$. Achieve from here: any map $[0,1] \xrightarrow{f} S^{n>1}$ is homotopic to a non-surjective map. Thus $\pi_1(S^{n>1}) = \{1\}$.
 - (c) Prove that any two non-surjective maps $X \xrightarrow{f,f'} S^{n>0}$ are homotopic. What about $X \xrightarrow{f,f'} S^0$?
- (3) A subset $A \subset \mathbb{R}^n$ is called "a star" if for some point $a_0 \in A$ any segment from a_0 to any other point of A lies inside A.
 - (a) Prove that any two maps to a star, $X \xrightarrow{f,f'} A$, are homotopic. (In particular any star-set is simply connected.)
 - (b) Is it true that any two maps from a star set to a path-connected space, $A \xrightarrow{f,f'} X$ are homotopic?
- (4) X is called contractible if the identity map $X \xrightarrow{Id} X$ is nullhomotopic (i.e. homotopic to a constant map, $X \to pt \in X$).
 - (a) Prove that the following spaces are contractible: \mathbb{R}^n , an open/closed ball in \mathbb{R}^n , $\{(x, y, z) \mid z^2 = x^2 + y^2\} \subset \mathbb{R}^3$.
 - (b) Prove that being contractible is a topological property (i.e. if $X \stackrel{homeo}{\approx} Y$ then X is contractible iff Y is contractible).
 - (c) Is a (finite/infinite) product of contractible spaces contractible? (in the product topology) Is any open/closed subspace of a contractible space contractible?
- (5) Prove: the maps $X \xrightarrow{f,f'} Y_1 \times Y_2$ are homotopic iff $p_1(f) \sim p_1(f')$ and $p_2(f) \sim p_2(f')$.
- (6) (a) Show that any map $X \xrightarrow{\phi} Y$, $\phi(x_0) = y_0$, induces a homomorphism of groups $\pi_1(X, x_0) \xrightarrow{\phi_*} \pi_1(Y, y_0)$. Which map $\pi_1(S^1) \xrightarrow{\phi_*} \pi_1(S^1)$ is induced by $z \to z^n$?
 - (b) Suppose ϕ is surjective/injective/homeomorphism, is ϕ_* necessarily surjective/injective/isomorphism? Suppose $X \xrightarrow{\phi} X$ is homotopic to the identity map, $X \xrightarrow{Id} X$, what is the map ϕ_* ?
 - (c) For the maps of connected spaces $X \xrightarrow{\phi} Y \xrightarrow{\psi} Z$ prove: $(\psi \circ \phi)_* = \psi_* \circ \phi_*$.
- (7) (a) Show that a map $\mathbb{R}^2 \supseteq A \xrightarrow{f} Y$ (for A connected) extends continuously to the whole \mathbb{R}^2 iff the induced homomorphism $\pi_1(A) \xrightarrow{f_*} \pi_1(Y)$ is trivial.
 - (b) Prove: for any two polynomials of the same degree, $p(x), q(x) \in \mathbb{C}[x]$, there exists r > 0 such that for any R > r the maps $\{z \mid |z| = R\} \xrightarrow{p,q} \mathbb{C} \setminus (0,0)$ are homotopic.
- (8) Suppose X is path-connected, prove that the following conditions are equivalent:

i. X is simply connected. ii. Any map $S^1 \xrightarrow{f} X$ is homotopic to a constant map. iii. Any map $S^1 \xrightarrow{f} X$ can be extended to a (continuous) map $D^2 \xrightarrow{f} X$. iv. Any two paths from x_0 to x_1 in X are homotopic.

- (9) Let $X \xrightarrow{p} B$ be a covering, with X path connected and B simply connected. Prove that the covering is a homeomorphism. (In particular, the spaces \mathbb{R}^n , D^n have only trivial coverings.)
- (10) (a) Fix the matrix $A = \begin{bmatrix} n_1 & m_1 \\ n_2 & m_2 \end{bmatrix} \in Mat_{2\times 2}(\mathbb{Z})$ and consider the map $S^1 \times S^1 \xrightarrow{\phi_A} S^1 \times S^1$, $\phi_A(z, w) = (z^{n_1}w^{m_1}, z^{n_2}w^{m_2})$. Prove that ϕ_A is homeomorphism iff $A \in GL(2, \mathbb{Z})$, i.e. $det(A) = \pm 1$.
 - (b) Fix the standard basis of \mathbb{Z}^2 . Draw/imagine the cycles on the torus whose classes in $\pi_1(S^1 \times S^1)$ are (1,0), (1,1).
 - (c) Compute the presentation matrix of the map $\pi_1(S^1 \times S^1) \xrightarrow{(\phi_A)_*} \pi_1(S^1 \times S^1)$.
 - (d) Prove that there exists a self-homeomorphism of the torus that sends a loop of the class (3,4) to a loop of the class (1,0). Could you visualize it?
- (11) Let $A \in Mat_{3\times 3}(\mathbb{R}_{\geq 0})$ and suppose that either all the entries of A are positive or $det(A) \neq 0$. Prove: A has a positive (real) eigenvalue. (Part of this was proved in the class.)