Introduction to Topology, 201.1.0091
 Homework 3

Spring 2016 (D.Kerner)
(1) Prove
(a) The composition of continuous maps is continuous.

(b) If $X \xrightarrow{f} Y$ is continuous then for any $A \subset X$ the function $A \xrightarrow{\left.f\right|_{A}} Y$ is continuous (for $\left.\mathcal{T}_{A}{ }^{\varnothing} \mathcal{T}_{X}\right|_{A}$).
(c) If $X \xrightarrow{f} Y$ is continuous and $f(X) \subset B \subset Y$ then the function $X \xrightarrow{f} B$ is continuous for $\mathcal{T}_{B}=\left.\mathcal{T}_{Y}\right|_{B}$.
(d) If $X \xrightarrow{f} Y$ is continuous and $Y \subset Z$, with $\mathcal{T}_{Y}=\left.\mathcal{T}_{Z}\right|_{Y}$ then the function $X \xrightarrow{f} Z$ is continuous.
(e) $X \xrightarrow{f} Y$ is continuous iff there exists an open covering $X=\cup_{i} U_{i}$ such that $U_{i} \xrightarrow{f \mid U_{i}} Y$ is continuous for each i.
(f) $X \xrightarrow{f} Y$ is continuous iff it is continuous at each point of X.
(2) (a) Given a map of topological spaces, $X \xrightarrow{f} Y$, prove that the following conditions are equivalent.
i. f is continuous. ii. For every closed $B \subset Y$ the set $f^{-1}(B) \subset X$ is closed.
iii. For any $A \subset X$ holds $f(\bar{A}) \subseteq \overline{f(A)}$. iv. For any $B \subset Y$ holds: $f^{-1}(\bar{B}) \supseteq \overline{f^{-1}(B)}$.
(b) Which of the following properties are implied by continuity? Do they imply continuity?
i. For any $A \subset X$ holds $f(\operatorname{Int}(A)) \supseteq \operatorname{Int}(f(A))$. ii. For any $B \subset Y$ holds $\operatorname{Int}\left(f^{-1}(B)\right) \supseteq f^{-1}(\operatorname{Int}(B))$.
(3) A map $X \times Y \xrightarrow{f} Z$ is called 'continuous in each variable separately' if for each $y_{0} \in Y$ the map $X \xrightarrow{f\left(*, y_{0}\right)} Z$ is continuous and for each $x_{0} \in X$ the map $Y \xrightarrow{f\left(x_{0}, *\right)} Z$ is continuous.
(a) Show that if f is continuous then it is continuous in each variable separately.
(b) Give examples (e.g. from Calculus 2,3) of functions continuous in each variable separately but not continuous.
(4) Given a top.space $\left(Y, \mathcal{T}_{Y}\right)$ and a subset $X \subset Y$, prove:
(a) The emedding map $X \stackrel{i}{\hookrightarrow} Y$ is continuous for the induced topology $\mathcal{T}_{X}=\left.\mathcal{T}_{Y}\right|_{X}$.
(b) $\left.\mathcal{T}_{Y}\right|_{X}$ is the coarsest topology for which i is continuous.
(5) (a) Prove that homeomorphism of topological spaces is an equivalence relation.
(b) Suppose $X \xrightarrow{f} Y$ is a homeomorphism of topological spaces. Prove that for any $A \subset X$ holds: $f(\bar{A})=\overline{f(A)}, \quad f(\operatorname{Int}(A))=\operatorname{Int}(f(A)), \quad f(\partial(A))=\partial f(A)$.
(6) Prove the homeomorphisms in the following cases (with the induced topology):
i. $\mathbb{R}^{2} \approx\left\{(x, y) \mid x^{2}+y^{2}<10\right\} \approx\left\{(x, y)| | x|<5,|y|<7\} \approx(0,1) \times \mathbb{R} \approx\{(x, y) \mid x>0\} \approx \mathbb{R}^{2} \backslash\{(x, 0) \mid x \leq 0\}\right.$.
ii. $\left\{x^{2}+y^{2} \leq 1\right\} \approx\{|x| \leq 1,|y| \leq 1\} \approx\{x \geq 0, y \geq 0, x+y \leq 1\}$. iii. $S^{2} \backslash\{$ point $\} \approx \mathbb{R}^{2}$.
(7) Prove the homeomorphisms (here $\mathbb{R}^{0}=$ a point, $S^{0}=$ two points):
$\mathbb{R}^{2} \backslash \mathbb{R}^{0} \approx S^{1} \times \mathbb{R} . \quad \mathbb{R}^{3} \backslash \mathbb{R}^{0} \approx S^{2} \times \mathbb{R} . \quad \mathbb{R}^{3} \backslash \mathbb{R}^{1} \approx S^{1} \times \mathbb{R}^{2} . \quad \mathbb{R}^{n} \backslash \mathbb{R}^{k} \approx S^{n-k-1} \times \mathbb{R}^{n+1}$.
(8) Identify $M a t_{n \times n}(\mathbb{R}) \approx \mathbb{R}^{n^{2}}$ (the space of real valued square matrices). This turns $M a t_{n \times n}(\mathbb{R})$ into a topological space with the 'standard topology'.
(a) Prove that the functions $M a t_{n \times n}(\mathbb{R}) \xrightarrow{\text { trace }} \mathbb{R}$ and $M a t_{n \times n}(\mathbb{R}) \xrightarrow{\text { det }} \mathbb{R}$ are continuous.
(b) Which of the following subsets of $\operatorname{Mat}_{n \times n}(\mathbb{R})$ are open/closed? $G L_{n}(\mathbb{R})=\{A \mid \operatorname{det}(A) \neq 0\}$, $S L_{n}(\mathbb{R})=\{A \mid \operatorname{det}(A)=1\}, \quad G L_{n}^{+}(\mathbb{R})=\{A \mid \operatorname{det}(A)>0\}, \quad O(n)=\left\{A \mid A A^{t}=\mathbb{I}_{n \times n}\right\}$
(c) Prove that the multiplication map, $\operatorname{Mat}_{n \times n}(\mathbb{R}) \times M a t_{n \times n}(\mathbb{R}) \xrightarrow{(A, B) \rightarrow A B} M a t_{n \times n}(\mathbb{R})$, is continuous.
(d) Prove that the inverse map, $G L_{n}(\mathbb{R}) \xrightarrow{A \rightarrow A^{-1}} G L_{n}(\mathbb{R})$, is a homeomorphism.
(9) (a) Given a continuous function $\mathbb{R} \supseteq \mathcal{D}_{f} \xrightarrow{f} \operatorname{Im}(f) \subseteq \mathbb{R}$ which is a bijection between its domain and its image. Prove that the domain and the graph $\mathcal{D}_{f} \approx \Gamma_{f} \subset \mathbb{R}^{2}$ are homeomorphic (with their embedded topologies).
(b) Prove: if a continuous function $\mathbb{R} \supset[a, b] \xrightarrow{f} \operatorname{Im}(f) \subseteq \mathbb{R}$ is bijective onto its image then its inverse is continuous.
(c) Give an example of a continuous function $\mathbb{R} \supseteq \mathcal{D}_{f} \xrightarrow{f} \operatorname{Im}(f) \subseteq \mathbb{R}$ which is bijective onto its image, but whose inverse is not continuous.
(d) Fix a continuous function $\mathbb{R} \supset[a, b] \xrightarrow{f} C \subset \mathbb{R}^{n}$, bijective onto C (the later is called 'a parameterized continuous curve'). Prove that f is a homeomorphism between $[a, b] \subset \mathbb{R}$ and $C \subset \mathbb{R}^{n}$.
(e) Does the last statement hold when the domain is open, $\mathbb{R} \supset(a, b) \xrightarrow{f} C \subset \mathbb{R}^{n}$?
(10) Fix some topological spaces $\left\{X_{j}\right\}_{j \in J}$, here J is an infinite set. Which of the following statements hold for the product topology on $\prod_{j \in J} X_{j}$? For the box topology on $\prod_{j \in J} X_{j}$?
(a) If the subsets $\left\{A_{j} \subseteq X_{j}\right\}$ are closed/open then the subset $\prod_{j \in J} A_{j} \subseteq \prod_{j \in J} X_{j}$ is closed/open.
(b) $\prod_{j \in J_{1} \amalg J_{2}} X_{j}=\left(\prod_{j \in J_{1}} X_{j}\right) \times\left(\prod_{j \in J_{2}} X_{j}\right) . \quad \prod_{j \in J} \overline{A_{j}}=\overline{\prod_{j \in J} A_{j}} . \quad \prod_{j \in J} \operatorname{Int}\left(A_{j}\right)=\operatorname{Int}\left(\prod_{j \in J} A_{j}\right)$.

