Introduction to Topology, 201.1.0091 Homework 3

Spring 2016 (D.Kerner)

- (1) Prove
 - (a) The composition of continuous maps is continuous.
 - (b) If $X \xrightarrow{f} Y$ is continuous then for any $A \subset X$ the function $A \xrightarrow{f|_A} Y$ is continuous (for $\mathcal{T}_A \stackrel{\varnothing}{=} \mathcal{T}_X|_A$).
 - (c) If $X \xrightarrow{f} Y$ is continuous and $f(X) \subset B \subset Y$ then the function $X \xrightarrow{f} B$ is continuous for $\mathcal{T}_B = \mathcal{T}_Y|_B$.
 - (d) If $X \xrightarrow{f} Y$ is continuous and $Y \subset Z$, with $\mathcal{T}_Y = \mathcal{T}_Z|_Y$ then the function $X \xrightarrow{f} Z$ is continuous.
 - (e) $X \xrightarrow{f} Y$ is continuous iff there exists an open covering $X = \bigcup_{i} U_i$ such that $U_i \xrightarrow{f|_{U_i}} Y$ is continuous for each i.
 - (f) $X \xrightarrow{f} Y$ is continuous iff it is continuous at each point of X.
- (2) (a) Given a map of topological spaces, $X \xrightarrow{f} Y$, prove that the following conditions are equivalent. ii. For every closed $B \subset Y$ the set $f^{-1}(B) \subset X$ is closed. i. f is continuous. iii. For any $A \subset X$ holds $f(\overline{A}) \subseteq \overline{f(A)}$. iv. For any $B \subset Y$ holds: $f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}$.
 - (b) Which of the following properties are implied by continuity? Do they imply continuity? i. For any $A \subset X$ holds $f(Int(A)) \supseteq Int(f(A))$. ii. For any $B \subset Y$ holds $Int(f^{-1}(B)) \supseteq f^{-1}(Int(B))$.
- (3) A map $X \times Y \xrightarrow{f} Z$ is called 'continuous in each variable separately' if for each $y_0 \in Y$ the map $X \xrightarrow{f(*,y_0)} Z$ is continuous and for each $x_0 \in X$ the map $Y \xrightarrow{f(x_0,*)} Z$ is continuous.
 - (a) Show that if f is continuous then it is continuous in each variable separately.
 - (b) Give examples (e.g. from Calculus 2,3) of functions continuous in each variable separately but not continuous.
- (4) Given a top.space (Y, \mathcal{T}_Y) and a subset $X \subset Y$, prove:
 - (a) The emedding map $X \xrightarrow{i} Y$ is continuous for the induced topology $\mathcal{T}_X = \mathcal{T}_Y|_X$.
 - (b) $\mathcal{T}_Y|_X$ is the coarsest topology for which *i* is continuous.
- (5) (a) Prove that homeomorphism of topological spaces is an equivalence relation.
 - (b) Suppose $X \xrightarrow{f} Y$ is a homeomorphism of topological spaces. Prove that for any $A \subset X$ holds: $f(\overline{A}) = \overline{f(A)},$ f(Int(A)) = Int(f(A)), $f(\partial(A)) = \partial f(A).$
- (6) Prove the homeomorphisms in the following cases (with the induced topology): (6) If fore the homeomorphisms in the following cases (with the induced topology): i. $\mathbb{R}^2 \approx \{(x,y) \mid x^2 + y^2 < 10\} \approx \{(x,y) \mid |x| < 5, |y| < 7\} \approx (0,1) \times \mathbb{R} \approx \{(x,y) \mid x > 0\} \approx \mathbb{R}^2 \setminus \{(x,0) \mid x \le 0\}.$ ii. $\{x^2 + y^2 \le 1\} \approx \{|x| \le 1, |y| \le 1\} \approx \{x \ge 0, y \ge 0, x + y \le 1\}.$ iii. $S^2 \setminus \{point\} \approx \mathbb{R}^2.$ (7) Prove the homeomorphisms (here \mathbb{R}^0 =a point, S^0 =two points): $\mathbb{R}^2 \setminus \mathbb{R}^0 \approx S^1 \times \mathbb{R}.$ $\mathbb{R}^3 \setminus \mathbb{R}^0 \approx S^2 \times \mathbb{R}.$ $\mathbb{R}^3 \setminus \mathbb{R}^1 \approx S^1 \times \mathbb{R}^2.$ $\mathbb{R}^n \setminus \mathbb{R}^k \approx S^{n-k-1} \times \mathbb{R}^{n+1}.$
- (8) Identify $Mat_{n \times n}(\mathbb{R}) \approx \mathbb{R}^{n^2}$ (the space of real valued square matrices). This turns $Mat_{n \times n}(\mathbb{R})$ into a topological space with the 'standard topology'.

 - (a) Prove that the functions $Mat_{n\times n}(\mathbb{R}) \xrightarrow{trace} \mathbb{R}$ and $Mat_{n\times n}(\mathbb{R}) \xrightarrow{det} \mathbb{R}$ are continuous. (b) Which of the following subsets of $Mat_{n\times n}(\mathbb{R})$ are open/closed? $GL_n(\mathbb{R}) = \{A | det(A) \neq 0\},$
 - (b) Which of the following subsets of Mat_{n×n}(R) are open/obset. Ch_n(R) = {A| det(R) {A^t = 𝔅_{n×n}}
 SL_n(ℝ) = {A| det(A) = 1}, GL⁺_n(ℝ) = {A| det(A) > 0}, O(n) = {A| AA^t = 𝔅_{n×n}}
 (c) Prove that the multiplication map, Mat_{n×n}(ℝ) × Mat_{n×n}(ℝ) ^{(A,B)→AB} Mat_{n×n}(ℝ), is continuous.
 (d) Prove that the inverse map, GL_n(ℝ) ^{A→A⁻¹}/_→ GL_n(ℝ), is a homeomorphism.
- (9) (a) Given a continuous function $\mathbb{R} \supseteq \mathcal{D}_f \xrightarrow{f} Im(f) \subseteq \mathbb{R}$ which is a bijection between its domain and its image. Prove that the domain and the graph $\mathcal{D}_f \approx \Gamma_f \subset \mathbb{R}^2$ are homeomorphic (with their embedded topologies).
 - (b) Prove: if a continuous function $\mathbb{R} \supset [a,b] \xrightarrow{f} Im(f) \subseteq \mathbb{R}$ is bijective onto its image then its inverse is continuous.
 - (c) Give an example of a continuous function $\mathbb{R} \supseteq \mathcal{D}_f \xrightarrow{f} Im(f) \subseteq \mathbb{R}$ which is bijective onto its image, but whose inverse is not continuous.
 - (d) Fix a continuous function $\mathbb{R} \supset [a,b] \xrightarrow{f} C \subset \mathbb{R}^n$, bijective onto C (the later is called 'a parameterized continuous curve'). Prove that f is a homeomorphism between $[a, b] \subset \mathbb{R}$ and $C \subset \mathbb{R}^n$.
 - (e) Does the last statement hold when the domain is open, $\mathbb{R} \supset (a, b) \xrightarrow{f} C \subset \mathbb{R}^n$?
- (10) Fix some topological spaces $\{X_j\}_{j \in J}$, here J is an infinite set. Which of the following statements hold for the Fix some topological spaces $\{A_{j}\}_{j \in J}$, here $i \in \mathbb{Z}$. product topology on $\prod_{j \in J} X_{j}$? For the box topology on $\prod_{j \in J} X_{j}$? (a) If the subsets $\{A_{j} \subseteq X_{j}\}$ are closed/open then the subset $\prod_{j \in J} A_{j} \subseteq \prod_{j \in J} X_{j}$ is closed/open.

(b)
$$\prod_{j \in J_1 \coprod J_2} X_j = \left(\prod_{j \in J_1} X_j\right) \times \left(\prod_{j \in J_2} X_j\right). \qquad \prod_{j \in J} \overline{A_j} = \overline{\prod_{j \in J} A_j}. \qquad \prod_{j \in J} Int(A_j) = Int(\prod_{j \in J} A_j)$$