Introduction to Topology, 201.1.0091 Homework 4

Spring 2016 (D.Kerner)

- (1) (a) Prove that a subspace of a Hausdorff space is Hausdorff.
 - (b) If (X, \mathcal{T}_X) is Hausdorff then any refinement of \mathcal{T}_X is Hausdorff.

(c) Prove that the property of being Hausdorff is preserved under homeromorphisms. \varnothing

- (d) Prove that the diagonal map $X \xrightarrow{\Delta} X \times X$, $\Delta(t) = (t, t)$ is continuous and X is Hausdorff iff $\Delta(X)$ is closed in $X \times X$.
- (e) Prove that any product of Hausdorff spaces is Hausdorff (both in the box and the product topologies).
- (2) Given an infinite collection of topological spaces, $\{X_{\alpha}\}$, prove that $\mathcal{T}_{\prod_{\alpha} X_{\alpha}}^{box} = \mathcal{T}_{\prod_{\alpha} X_{\alpha}}^{product}$ iff the topologies on X_{α} are trivial except for a finite number of values of α .
- (3) Prove that the projections $\prod X_{\alpha} \xrightarrow{\pi_{\beta}} X_{\beta}$ are open maps, i.e. the image of an open set is open. (Both in $\mathcal{T}_{\prod X_{\alpha}}^{box}$ and
 - in $\mathcal{T}_{\prod X_{\alpha}}^{product}$.) Are the projections always closed maps (i.e. the image of a closed set is closed)?
- (4) (a) Prove that the following functions $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{d_i} \mathbb{R}_{\geq 0}$ define metrics on \mathbb{R}^n :

i.
$$d_p(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$
, for $p \in \mathbb{N}$. (Use the inequality of Minkowski.) ii. $d_{\infty}(x,y) = \max_{i=1,\dots,n} \left(|x_i - y_i| \right)$.

- (b) For any fixed $x, y \in \mathbb{R}^n$ prove: $\lim_{p \to \infty} d_p(x, y) = d_{\infty}(x, y)$.
- (c) What are the unit balls centered at the origin for these metrics, for $p = 1, 2, \infty$?
- (d) For any $\infty \ge p > q \ge 1$ and any r > 0 prove: $Ball_{\frac{d_p}{k}}^{(d_p)}(0) \subsetneq Ball_r^{(d_q)}(0) \subsetneq Ball_r^{(d_p)}(0)$.
- (e) Prove that all the metrics d_p (for all the $1 \le p \le \infty$) define the same topology on \mathbb{R}^n .
- (5) (a) Suppose X has two metrics, d_1, d_2 . Which of the following functions are metrics? i. $d_1 + d_2$, ii. $max(d_1, d_2)$, iii. $min(d_1, d_2)$, iv. d_1d_2 , v. $\frac{d_1}{1+d_1}$, vi. $min(d_1, 1)$
 - (b) Given a metric space (X, d), and a function $\mathbb{R} \xrightarrow{f} \mathbb{R}$, prove that $X \times X \xrightarrow{f(d(x,y))} \mathbb{R}$ is also a metric if f satisfies the following: i. f(0) = 0, ii. f(x) is increasing, iii. $f(a+b) \le f(a) + f(b)$ for any $a, b \in \mathbb{R}_+$.
 - (c) Given a metric space (X, d) prove that the following functions are metrics and they all define the same topology on X: i. $\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$, ii. $\bar{d}(x,y) = max(d(x,y),1)$.
- (6)(a) Prove that the metric topology is always Hausdorff.
 - (b) Let (X, \mathcal{T}_X) be a finite set with some topology. Prove that \mathcal{T}_X is metrizable iff it is discrete.
 - (c) Given a metric space (X, d_X) and a subset $A \subset X$ define the induced metric on A by restriction, $d_A(x, y) :=$ $d_X(x,y)$. (Prove that this is a metric.) Prove that the metric topology on (A, d_A) coincides with the induced topology $\mathcal{T}_X|_A$.

(7) Fix a metric space (X, d). The distance between two subsets $A, B \subset X$ is defined as $d(A, B) := \inf_{\substack{x \in A \\ y \in B}} d(x, y)$.

- (a) Prove that $x \in \overline{A}$ iff d(x, A) = 0.
- (b) Find two disjoint closed subsets of \mathbb{R}^1 which are zero distance apart. Find two disjoint curves in \mathbb{R}^2 which are zero distance apart. (Curves=images of either of [0, 1], (0, 1), (0, 1], [0, 1) under a continuous map.)
- (8)(a) Given a metric space (X, d), prove that every metrically closed ball is topologically closed.
 - (b) Give examples of metric spaces in which there exists a metrically closed ball (of positive radius) that is topologically open. Give an example of space in which every metrically closed ball is topologically open.
 - (c) Give an example of a metric space, (X, d), in which there exist two balls, say B_1, B_2 , such that $B_1 \subsetneq B_2$, but the radii 'suggest' the converse: $r(B_1) > r(B_2)$. (Give example(s) with $|B_1|$ as small as possible, $|B_2|$ as large as possible and $\frac{r(B_1)}{r(B_2)}$ close to 2.)
 - (d) Prove that for any metric space, (X, d), any points $x_1, x_2 \in X$ and any number $r > d(x_1, x_2)$ the inclusion holds: $B_{r-d(x_1,x_2)}(x_1) \subseteq B_r(x_2).$

(9) (a) Fix $p \in \mathbb{N}$ and let $l_p = \left\{ \{a_n\}_{n=1}^{\infty} | \sum_{n=1}^{\infty} |a_n|^p < \infty \right\} \subset \mathbb{R}^{\mathbb{N}}$. Prove that l_p is a vector subspace of $\mathbb{R}^{\mathbb{N}}$. (b) Prove that $d_p(x, y) := \sqrt[p]{\sum_{n=1}^{\infty} |x_n - y_n|^p}$ is a metric on l_p .

- (c) Compare the topologies on $l_p \subset \mathbb{R}^{\mathbb{N}}$ induced from the box/product/uniform topologies on $\mathbb{R}^{\mathbb{N}}$ and the topology induced by $d_p(x, y)$. (Which are finer/coarser?)
- (d) Are the subsets $X_n = \{(x_1, x_2, \dots) | x_i = 0 \text{ for } i > n\}$ open/closed? (In which topology?)
- (e) Is the subset $\bigcup_{n \ge 1} X_n$ open/closed?
- (f) What about the Hilbert cube $H = \prod_{n \in \mathbb{N}} [0, \frac{1}{n}]?$
- (10) Denote by l_0 the subset of all the sequences (of real numbers) which are eventually zero. Prove that $l_0 \subset \mathbb{R}^{\mathbb{N}}$ is a vector subspace. What are the closure, $\overline{l_0}$, and the interior, $Int(l_0)$, in the box/product/uniform topologies?

