Introduction to Topology, 201.1.0091 Homework 5

Spring 2016 (D.Kerner)

- (1) (a) For which of the product/box/uniform topologies on $\prod_{i\in\mathbb{N}}\mathbb{R}$ the following functions are continuous? i. f(t) = (t, t, t, ...), ii. f(t) = (t, 2t, 3t, ...), iii. $f(t) = (t, \frac{t}{2}, \frac{t}{3}, ...)$.
 - (b) Prove that $\mathcal{T}_{\prod X_{\alpha}}^{product}$ is the coarsest topology for which all the projections $\prod_{\alpha} X_{\alpha} \xrightarrow{\pi_{\alpha}} X_{\alpha}$ are continuous. Prove that

in $\mathcal{T}_{\prod X_{\alpha}}^{product}$ the continuity of $X \xrightarrow{\alpha}{\rightarrow} \prod_{\alpha} X_{\alpha}$ implies the continuity of each f_{α} .

(c) Suppose $X_{\alpha} = X$, for all α . Suppose some topology $\mathcal{T}_{\prod_{\alpha} X_{\alpha}}$ is prescribed and some open set $\prod_{\alpha} \mathcal{U}_{\alpha} \in \mathcal{T}_{\prod_{\alpha} X_{\alpha}}$ satisfies: $\{\mathcal{U}_{\alpha} \subseteq X_{\alpha}\}_{\alpha}$ are open but $\bigcap_{\alpha} \mathcal{U}_{\alpha} \subset X$ is not open. Prove that for this topology the 'multi-identity' map, $\prod f_{\alpha}$

$$X \xrightarrow{\alpha} \prod X_{\alpha}, f_{\alpha}(t) = t$$
, is not continuous.

(d) Suppose a topology $\mathcal{T}_{\prod \mathbb{R}}$ contains the following open set: $\prod_{i=1}^{n} (a_i, b_i)$, here all $\{a_i\}, \{b_i\}$ are finite. Give an example

of continuous functions $\{\mathbb{R} \xrightarrow{f_i} \mathbb{R}\}_{i \in \mathbb{N}}$ such that the function $\mathbb{R} \xrightarrow{\prod f_i} \mathbb{R}$ is not continuous.

(2) (a) For which of the topologies $\mathcal{T}_{\prod_{\alpha \in \mathbb{N}} \mathbb{R}}^{product}$, $\mathcal{T}_{\prod_{\alpha \in \mathbb{N}} \mathbb{R}}^{box}$, $\mathcal{T}_{\prod_{\alpha \in \mathbb{N}} \mathbb{R}}^{uniform}$ the following sequences converge? i. $x_i = (\underbrace{0, \ldots, 0}_{i}, i, i, \ldots),$

ii.
$$y_i = (\underbrace{0, \dots, 0}_{i}, \frac{1}{i}, \frac{1}{i}, \dots),$$
 iii. $z_i = (\underbrace{\frac{1}{i}, \dots, \frac{1}{i}}_{i}, 0, \dots, 0, \dots),$ iv. $w_i = (\underbrace{\frac{1}{i}, \frac{1}{i}}_{2}, 0, \dots, 0, \dots).$

- (b) Prove that in $\mathcal{T}_{\prod_{\alpha \in I} X_{\alpha}}^{product}$ holds: the product converges, $\{x_{n}^{(\alpha)}\}_{\substack{\alpha \in I \\ n=1,2,\dots}} \to \{x^{(\alpha)}\}_{\alpha \in I}$ iff each coordinate sequence
- converges, $\{x_n^{(\alpha)}\}_{n=1,2,\dots}^{\alpha \in I} \to x^{(\alpha)}$, for each α . (c) Suppose a topology $\mathcal{T}_{\prod_{\alpha \in I} X_{\alpha}}$ contains at least one set $\prod_{\lambda} \mathcal{U}_{\alpha}$, with $\emptyset \neq \mathcal{U}_{\alpha} \neq X_{\alpha}$ for infinite number of values of α . Construct a sequence $\{x_n^{(\alpha)}\}_{n\in\mathbb{N}}$ which converges in each coordinate separately, but not as a sequence in $\mathcal{T}_{\prod_i X_{\alpha}}$.
- (a) Fix a collection of metric spaces, $\{(X_{\alpha}, d_{\alpha})\}$, prove the comparison of the product, uniform and box topologies: (3) $\mathcal{T}_{\prod X_{\alpha}}^{product} \subseteq \mathcal{T}_{\prod X_{\alpha}}^{uniform} \subseteq \mathcal{T}_{\prod X_{\alpha}}^{box}$. Give examples with the proper inclusions.
 - (b) Given a countable collection of metric spaces, $\{(X_i, d_i)\}_{i \in \mathbb{N}}$, prove that the following functions define metrics on $\prod_{i\in\mathbb{N}} X_i$, and the corresponding topology is precisely the product topology:

i.
$$d(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i,y_i)}{1+d_i(x_i,y_i)}, \quad \text{ii. } d(x,y) = \sup\left\{\frac{\overline{d_i}(x_i,y_i)}{i}\right\}, \text{ here } \overline{d_i}(x_i,y_i) = \min(d_i(x_i,y_i),1).$$

- (4) (a) Given a metric space (X, d_X) and a surjective map $X \xrightarrow{J} Y$, which of the following always defines a metric on Y? $f_*(d_X)(y_1, y_2) = \sup_{\substack{f(x_1) = y_1 \\ f(x_2) = y_2}} d_X(x_1, x_2), \quad f_*(d_X)(y_1, y_2) = \inf_{\substack{f(x_1) = y_1 \\ f(x_2) = y_2}} d_X(x_1, x_2).$
 - (b) Given a metric space (Y, d_Y) and an injective map $X \xrightarrow{f} Y$, does the function $f^*(d_Y)(x_1, x_2) = d_Y(f(x_1), f(x_2))$ always define a metric on X?
 - (c) Given two homeomorphic spaces, $X \approx Y$, with \mathcal{T}_X metrizable, prove that \mathcal{T}_Y is metrizable as well. (In particular one gets: the spaces $(\mathbb{R}^{\mathbb{N}}, \mathcal{T}_{\mathbb{R}^{\mathbb{N}}}^{product})$, $(\mathbb{R}^{\mathbb{N}}, \mathcal{T}_{\mathbb{R}^{\mathbb{N}}}^{box})$, are not homeomorphic.)
- (5) (a) Fix an infinite set X, with the topology of finite complements. Fix a sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ with pairwise distinct elements, i.e.: $x_i \neq x_j$ for $i \neq j$. Prove that $\{x_n\}$ converges to any point of X in this topology.
 - (b) Take \mathbb{R} with the topology of finite or countable complements. (This is a refinement of the topology of finite complements on \mathbb{R} .) What are the convergent sequences in this topology?
- (6) (a) Given a metric space (X, d) and a sequence $\{x_n\}$. Prove: $x_n \to x$ iff $d(x_n, x) \to 0$.
 - (b) Suppose $x_n \to x$ and $y_n \to y$. Prove that $d(x_n, y_n) \to d(x, y)$.