Introduction to Topology, 201.1.0091
 Homework 6

Spring 2016 (D.Kerner)
(1) (a) Prove: if X is connected and the map $X \xrightarrow{f} Y$ is continuous then $f(X) \subseteq Y$ is connected. In particular, if $X \stackrel{\text { homeo }}{\approx} Y$ then X is connected iff Y is connected.
(b) Prove that the following spaces are pairwise non-homeomorphic (all the topologies are the usual ones): i. $(0,1)$, ii. $[0,1]$, iii. $[0,1] \cup[3,4], \quad$ iv. $[-1,0) \cup(0,1], \quad$ v. S^{1}, \quad vi. $\mathbb{R}^{n}, n>1$.
(c) Prove that S^{1} is not homeomorphic to any subset of \mathbb{R}.
(d) Prove that for any continuous function $S^{1} \xrightarrow{f} \mathbb{R}$ any point of the set $f\left(S^{1}\right) \backslash\left\{\inf f\left(f\left(S^{1}\right)\right), \sup \left(f\left(S^{1}\right)\right)\right\}$ has at least two preimages in S^{1}.
(e) Classify the alphabet letters up to homeomorhism: A,B,C,D,E,F,G,...
(2) (a) Prove that every infinite set is connected in the topology of finite complements.
(b) Show that a finite Hausdorff space is totally disconnected, i.e. its only connected subsets are the one-point sets.
(c) Show that X is connected iff for any $\varnothing \neq A \subsetneq X$ holds: $\partial(A) \neq \varnothing$.
(d) Show that $A \subset X$ is non-connected iff exists $X_{1}, X_{2} \subset X$ satisfying: $A=X_{1} \amalg X_{2},{\overline{X_{1}}}^{(X)} \cap X_{2}=\varnothing, X_{1} \cap$ $\bar{X}_{2}^{(X)}=\varnothing$. (Note that here X_{1}, X_{2} are not necessarily open. Does the statement hold with the condition ${\overline{X_{1}}}^{(X)} \cap{\overline{X_{2}}}^{(X)}=\varnothing$?)
(e) Prove that if $A \subset X$ is connected and $A \subseteq B \subseteq \bar{A}$ then B is connected. Does the converse hold?
(f) Suppose both $A \cup B$ and $A \cap B$ are connected. Does this imply the connectedness of A, B ?
(3) (a) Given a continuous map $X \xrightarrow{f} Y$, with X connected, prove that the graph $\Gamma_{f} \subseteq X \times Y$ is a connected subset.
(b) Prove that if a connected subset $C \subsetneq X$ intersects both $A \subsetneq X$ and $X \backslash A$, then C intersects ∂A. (Compare this to the intermediate value theorem of calculus.)
(4) (a) Given X with two topologies, $\mathcal{T}_{1} \subsetneq \mathcal{T}_{2}$. Show that if $\left(X, \mathcal{T}_{2}\right)$ is connected then $\left(X, \mathcal{T}_{1}\right)$ is connected as well. Give examples where the converse does not hold.
(b) Prove that $\left(\prod_{\alpha} X_{\alpha}, \mathcal{T}_{\prod_{\alpha} X_{\alpha}}^{\text {product }}\right)$ is connected iff all X_{α} are connected.
(c) Suppose X is connected, while Y has two connected components, $Y=\mathcal{U}_{1} \coprod \mathcal{U}_{2}$. Suppose in the topology $\mathcal{T}_{X \times Y} \subsetneq \mathcal{T}_{X \times Y}^{\text {product }}$ at least one of $X \times \mathcal{U}_{1}, X \times \mathcal{U}_{2}$ is not open. Prove that $\left(X \times Y, \mathcal{T}_{X \times Y}\right)$ is connected.
(d) Prove that $\left(\prod_{i \in \mathbb{N}} \mathbb{R}, \mathcal{T} \prod_{i \in \mathbb{N}}^{b o x} \mathbb{R}\right)$ is not connected. (Check the subset \{bounded sequences $\} \subset \prod_{i \in \mathbb{N}} \mathbb{R}$ and its complement.)
(e) What about $\prod_{i \in \mathbb{N}} \mathbb{R}$ in the uniform topology?
(5) (a) Split $\mathbb{Q}, \mathbb{R} \backslash \mathbb{Q}$ into the union of connected components.
(b) Prove that an open subset of \mathbb{R}^{n} can have at most countably many connected components.
(c) X is called totally disconnected if its only connected components are points. Suppose $X \subset \mathbb{R}^{n}$ is totally disconnected, does this mean that $\mathbb{R}^{n} \backslash X$ contains an open subset of \mathbb{R}^{n} ?
(6) Check the (path-)connectedness in the following cases.
(a) i. S^{n} with a finite number of punctures (what about $n=0$?). ii. \mathbb{R}^{n} with a countable number of punctures. iii. $\mathbb{R}^{n+1} \supset S^{n} \backslash S^{k}$, here the embedding $S^{k} \subset S^{n}$ is equatorial, i.e. $S^{k}=\left\{\sum_{i=0}^{k} x_{i}^{2}=1, x_{i>k}=0\right\} \subset \mathbb{R}^{n+1}$.
(b) i. $\mathbb{Q}^{2} \subset \mathbb{R}^{2}, \quad$ ii. $(\mathbb{Q} \times \mathbb{R} \cup \mathbb{R} \times \mathbb{Q}) \subset \mathbb{R}^{2}$,
(c) The "squeezed comb" space: $X=([0,1] \times 0) \cup(K \times[0,1]) \cup(0 \times[0,1])$, where $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
(d) The deleted comb space: $X=([0,1] \times 0) \cup(K \times[0,1]) \cup(0 \times[0,1]) \backslash(0 \times(0,1))$, where $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
(7) (a) Suppose all X_{α} are path-connected, is $\left(\prod_{\alpha} X_{\alpha}, \mathcal{T}_{\prod_{\alpha}^{\text {product }} X_{\alpha}}\right)$ necessarily path connected?
(b) Suppose $A \subset X$ is (path-)connected. Are the sets $\operatorname{Int}(A), \bar{A}, \partial(A)$ necessarily (path-)connected?
(c) Suppose $X \xrightarrow{f} Y$ is continuous and X is path-connected. Is $f(X) \subseteq Y$ path connected?
(8) (a) Prove that a pancake (i.e. an open bounded subset of \mathbb{R}^{2}, not necessarily connected) can be cut into two pieces of precisely the same area by one (straight) cut.
(b) Prove that two pancakes (i.e. two open bounded subsets of \mathbb{R}^{2}) can be simultaneously cut into halves of (accordingly) equal area by one (straight) cut. (Hint: you need to use that some relevant subset is conected. You should represent this subset as $f^{-1}(.$.$) for some continuous function.)$
(9) Let $p_{d}(x, y)$ be a polynomial in x, y, of total degree d. How many (path-)connected components can have the space $\mathbb{R}^{2} \backslash\left\{p_{2}(x, y)=0\right\}$? Give example of $p_{d}(x, y)$ for which $\mathbb{R}^{2} \backslash\left\{p_{d}(x, y)=0\right\}$ has $\binom{d+1}{2}+1$ connected components. (Hint: take d lines.) It is also worth to read the wiki-page on Arrangements of hyperplanes.
(10) Classify the (path-)connected components of the following matrix subspaces of $M a t_{n \times n}(\mathbb{R})$ and $M a t_{n \times n}(\mathbb{C})$:
i. $\operatorname{Mat}_{n \times n}^{\text {sym }}(\mathbb{R})=\left\{A \mid A=A^{t}\right\}$, ii. $\operatorname{Mat}_{n \times n}^{\text {herm }}(\mathbb{C})=\left\{A \mid A^{t}=\bar{A}\right\}$, iii. $G L(n, \mathbb{R})$, iv. $O(n)=\left\{A \mid A \cdot A^{t}=\mathbb{I}_{n \times n}\right\}$, v. $S O(n)=\{A \in O(n) \mid \operatorname{det}(A)=1\}$, vi. $G L(n, \mathbb{C})$, vii. $M a t_{n \times n}^{s y m}(\mathbb{R}) \cap G L(n, \mathbb{R})$, viii. $U(n)=\left\{A \mid A \cdot \overline{A^{t}}=\mathbb{1}_{n \times n}\right\}$.
(One way to do this is to turn the discrete steps of the Gauss algorithm into continuous paths.)

