Introduction to Topology, 201.1.0091 Homework 6

Spring 2016 (D.Kerner)

- (1) (a) Prove: if X is connected and the map $X \xrightarrow{f} Y$ is continuous then $f(X) \subseteq Y$ is connected. In particular, if $X \stackrel{homeo}{\approx} Y$ then X is connected iff Y is connected.
 - (b) Prove that the following spaces are pairwise non-homeomorphic (all the topologies are the usual ones): i. (0,1), ii. [0,1], iii. $[0,1] \cup [3,4]$, iv. $[-1,0) \cup (0,1]$, v. S^1 , vi. \mathbb{R}^n , n > 1.
 - (c) Prove that S^1 is not homeomorphic to any subset of \mathbb{R} .

(2)

- (d) Prove that for any continuous function $S^1 \xrightarrow{f} \mathbb{R}$ any point of the set $f(S^1) \setminus \{inf(f(S^1)), sup(f(S^1))\}$ has at least two preimages in S^1 .
- (e) Classify the alphabet letters up to homeomorhism: A,B,C,D,E,F,G,...
- (a) Prove that every infinite set is connected in the topology of finite complements.
- (b) Show that a finite Hausdorff space is totally disconnected, i.e. its only connected subsets are the one-point sets.
- (c) Show that X is connected iff for any $\emptyset \neq A \subsetneq X$ holds: $\partial(A) \neq \emptyset$.
- (d) Show that $A \subset X$ is non-connected iff exists $X_1, X_2 \subset X$ satisfying: $A = X_1 \coprod X_2, \overline{X_1}^{(X)} \cap X_2 = \emptyset, X_1 \cap X_2$ $\overline{X_2}^{(X)} = \emptyset$. (Note that here X_1, X_2 are not necessarily open. Does the statement hold with the condition $\overline{X_1}^{(X)} \cap \overline{X_2}^{(X)} = \emptyset$?)
- (e) Prove that if $A \subset X$ is connected and $A \subseteq B \subseteq \overline{A}$ then B is connected. Does the converse hold?
- (f) Suppose both $A \cup B$ and $A \cap B$ are connected. Does this imply the connectedness of A, B?
- (3) (a) Given a continuous map $X \xrightarrow{f} Y$, with X connected, prove that the graph $\Gamma_f \subseteq X \times Y$ is a connected subset. (b) Prove that if a connected subset $C \subsetneq X$ intersects both $A \subsetneq X$ and $X \setminus A$, then C intersects ∂A . (Compare this to the intermediate value theorem of calculus.)
- (4) (a) Given X with two topologies, $\mathcal{T}_1 \subsetneq \mathcal{T}_2$. Show that if (X, \mathcal{T}_2) is connected then (X, \mathcal{T}_1) is connected as well. Give examples where the converse does not hold.
 - (b) Prove that $(\prod_{\alpha} X_{\alpha}, \mathcal{T}_{\prod X_{\alpha}}^{product})$ is connected iff all X_{α} are connected.
 - (c) Suppose X is connected, while Y has two connected components, $Y = \mathcal{U}_1 \coprod \mathcal{U}_2$. Suppose in the topology $\mathcal{T}_{X \times Y} \subsetneq \mathcal{T}_{X \times Y}^{product}$ at least one of $X \times \mathcal{U}_1, X \times \mathcal{U}_2$ is not open. Prove that $(X \times Y, \mathcal{T}_{X \times Y})$ is connected.
 - (d) Prove that $(\prod_{i\in\mathbb{N}}\mathbb{R},\mathcal{T}_{\prod_{i\in\mathbb{N}}\mathbb{R}}^{box})$ is not connected. (Check the subset {bounded sequences} $\subset \prod_{i\in\mathbb{N}}\mathbb{R}$ and its complement.)
 - (e) What about $\prod_{i \in \mathbb{N}} \mathbb{R}$ in the uniform topology?
- (5) (a) Split \mathbb{Q} , $\mathbb{R} \setminus \mathbb{Q}$ into the union of connected components.
 - (b) Prove that an open subset of \mathbb{R}^n can have at most countably many connected components.
 - (c) X is called totally disconnected if its only connected components are points. Suppose $X \subset \mathbb{R}^n$ is totally disconnected, does this mean that $\mathbb{R}^n \setminus X$ contains an open subset of \mathbb{R}^n ?
- (6) Check the (path-)connectedness in the following cases.

(a) i. S^n with a finite number of punctures (what about n = 0?). ii. \mathbb{R}^n with a countable number of punctures. 1 1 11: Ck = Cn: $(\sum_{k=1}^{k} 2)$ $an \setminus ak = 1$. .

iii.
$$\mathbb{R}^{n+1} \supset S^n \setminus S^k$$
, here the embedding $S^k \subset S^n$ is equatorial, i.e. $S^k = \{\sum_{i=0} x_i^2 = 1, x_{i>k} = 0\} \subset \mathbb{R}^{n+1}$.

- (b) i. $\mathbb{Q}^2 \subset \mathbb{R}^2$, ii. $(\mathbb{Q} \times \mathbb{R} \cup \mathbb{R} \times \mathbb{Q}) \subset \mathbb{R}^2$, (c) The "squeezed comb" space: $X = ([0,1] \times 0) \cup (K \times [0,1]) \cup (0 \times [0,1])$, where $K = \{\frac{1}{n} | n \in \mathbb{N}\}$.
- (d) The deleted comb space: $X = ([0, 1] \times 0) \cup (K \times [0, 1]) \cup (0 \times [0, 1]) \setminus (0 \times (0, 1))$, where $K = \{\frac{1}{n} | n \in \mathbb{N}\}$. (7) (a) Suppose all X_{α} are path-connected, is $(\prod_{\alpha} X_{\alpha}, \mathcal{T}_{\prod}^{product} X_{\alpha})$ necessarily path connected?
- - (b) Suppose $A \subset X$ is (path-)connected. Are the sets Int(A), \overline{A} , $\partial(A)$ necessarily (path-)connected?
 - (c) Suppose $X \xrightarrow{f} Y$ is continuous and X is path-connected. Is $f(X) \subseteq Y$ path connected?
- (a) Prove that a pancake (i.e. an open bounded subset of \mathbb{R}^2 , not necessarily connected) can be cut into two pieces (8)of precisely the same area by one (straight) cut.
 - (b) Prove that two pancakes (i.e. two open bounded subsets of \mathbb{R}^2) can be simultaneously cut into halves of (accordingly) equal area by one (straight) cut. (Hint: you need to use that some relevant subset is conected. You should represent this subset as $f^{-1}(..)$ for some continuous function.)
- (9) Let $p_d(x, y)$ be a polynomial in x, y, of total degree d. How many (path-)connected components can have the space $\mathbb{R}^2 \setminus \{p_2(x,y)=0\}$? Give example of $p_d(x,y)$ for which $\mathbb{R}^2 \setminus \{p_d(x,y)=0\}$ has $\binom{d+1}{2}+1$ connected components. (Hint: take d lines.) It is also worth to read the wiki-page on Arrangements of hyperplanes.
- (10) Classify the (path-)connected components of the following matrix subspaces of $Mat_{n\times n}(\mathbb{R})$ and $Mat_{n\times n}(\mathbb{C})$:
 - i. $Mat_{n\times n}^{sym}(\mathbb{R}) = \{A \mid A = A^t\}, \text{ ii. } Mat_{n\times n}^{herm}(\mathbb{C}) = \{A \mid A^t = \overline{A}\}, \text{ iii. } GL(n,\mathbb{R}), \text{ iv. } O(n) = \{A \mid A \cdot A^t = \mathbb{I}_{n\times n}\}, \text{ v. } SO(n) = \{A \in O(n) \mid det(A) = 1\}, \text{ vi. } GL(n,\mathbb{C}), \text{ vii. } Mat_{n\times n}^{sym}(\mathbb{R}) \cap GL(n,\mathbb{R}), \text{ viii. } U(n) = \{A \mid A \cdot \overline{A^t} = \mathbb{I}_{n\times n}\}.$ (One way to do this is to turn the discrete steps of the Gauss algorithm into continuous paths.)

