Introduction to Topology, 201.1.0091 Homework 7

Spring 2016 (D.Kerner)

- (1) Prove that a connected metric space having more than one point is uncountable.
- (2) The spiral $C \subset \mathbb{R}^2$ is defined in the polar coordinates by $\{r = \frac{1}{(1+\phi)^{\alpha}}, \phi \in [0,\infty)\}$, here $\alpha > 0$ is a constant. Is $\overline{C} \subset \mathbb{R}^2$ path connected? Does the answer depend on α , i.e. on the total length of C?
- (3) (a) Which spaces with discrete topology are compact?
- (b) Prove that any space with the topology of finite complements is compact.
- (4) (a) Given (X, \mathcal{T}_X) and a subset $A \subset X$, prove that A is a compact subset iff $(A, \mathcal{T}_X|_A)$ is a compact space.
 - (b) Given X with topologies $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Does the compactness of (X, \mathcal{T}_1) imply that of (X, \mathcal{T}_2) ? Or the converse?
 - (c) Prove that finite unions of compact subsets are compact.
- (5) (a) Prove that a closed subset in a compact space is compact. Prove that every compact subspace of a Hausdorff space is closed.
 - (b) Prove that a compact subset of a metric space is bounded and closed.
 - (c) Give an example of a closed, bounded but non-compact subset of a metric space.
 - (d) Prove that arbitrary intersections of compact subsets of a Hausdorff space are compact.
 - (e) Give an example of a (non-Hausdorff) space with compact subsets A, B, such that $A \cap B$ is non-compact.
- (6) (a) Suppose X is compact, while Y is Hausdorff. Prove that any continuous map $X \xrightarrow{f} Y$ is closed, i.e. f sends closed subsets of X to closed subsets of Y.
 - (b) In particular, prove that if $X \xrightarrow{f} Y$ is a continuous bijection, X is compact, Y is Hausdorff, then f is a homeomorphism. (i.e. in this case there is no need to check the continuity of f^{-1})
 - (c) Prove that the projection $X \times Y \xrightarrow{\pi_X} X$ is a closed map if Y is compact. (What happens if Y is non-compact?)
 - (d) Suppose Y is compact and Hausdorff. Prove that $X \xrightarrow{f} Y$ is continuous iff the graph $\Gamma_f \subset X \times Y$ is a closed subset.
- (7) Let $\mathbb{k} = \mathbb{R}$ or \mathbb{C} . Which of the following subspaces of $Mat_{n \times n}(\mathbb{k})$ are compact? (for the standard topology on $Mat_{n \times n}(\mathbb{k})$.) $GL(n, \mathbb{k}), SL(n, \mathbb{k}) = \{A \in Mat_{n \times n}(\mathbb{k}) | det(A) = 1\}, O(n), U(n).$
- (8) (a) Given a continuous map $(X, \mathcal{T}_X) \xrightarrow{f} (Y, \mathcal{T}_Y)$, prove that if X is compact then f(X) is compact. Does the converse hold?
 - (b) Prove that if (X, \mathcal{T}_X) is compact and $(X, \mathcal{T}_X) \xrightarrow{f} \mathbb{R}$ is continuous then f achieves its minimum and maximum on X.
- (9) (a) Let $\emptyset \neq X_1, X_2 \subset X$ be two disjoint compact subsets of a Hausdorff space. Prove that they can be separated by open subsets, i.e. $X_i \subset \mathcal{U}_i, \mathcal{U}_1 \cap \mathcal{U}_2 = \emptyset$.
 - (b) (A generalization of the tube lemma) Given some subsets $A \subset X$, $B \subset Y$ and an open set neighborhood \mathcal{U} of $A \times B$, i.e. $A \times B \subseteq \mathcal{U} \subseteq X \times Y$. Prove: if A, B are compact then exist some open sets $A \subseteq \mathcal{U}_A \subseteq X$, $B \subseteq \mathcal{U}_B \subseteq Y$, satisfying: $A \times B \subseteq \mathcal{U}_A \times \mathcal{U}_B \subseteq \mathcal{U}$.
- (10) A closed continuous surjective map $X \xrightarrow{f} Y$ is called *perfect* if $f^{-1}(y)$ is compact for any $y \in Y$. Prove that if f is perfect and Y is compact then X is compact as well.
- (11) (a) Given a metric space (X, d) and a subset $\emptyset \neq A \subset X$, prove that d(x, A) = 0 iff $x \in \overline{A}$.
 - (b) Prove that $X \times X \xrightarrow{d} \mathbb{R}_{>0}$ is a continuous function.
 - (c) Prove that if A is compact then d(x, A) = d(x, a) for some $a \in A$.
 - (d) An ε-neighborhood of A ⊂ X is U(A, ε) = {x ∈ X | d(x, A) < ε}. (It can be covered by open balls {Ball_ε(a)}_{a∈A}.) Suppose A is compact and U is an open neighborhood of A. Prove that U contains some ε-neighborhood of A.
 (e) Give examples of closed-but-unbounded or bounded-but-non-closed subsets of ℝⁿ for which (c) does not hold.
 - (f) Suppose $A, B \subset X$ are compact and disjoint. Prove that d(A, B) > 0.
- (12) Let X be compact, Hausdorff. Given a countable family of sets, $\{A_n\}_{n \in \mathbb{N}}$, with empty interiors, $Int(A_n) = \emptyset$, prove that $Int(\cup A_n) = \emptyset$.
- (13) Prove that if $U \subset \mathbb{R}^n$ is connected and open then U is path-connected.
- (14) A map $X \xrightarrow{f} X$ satisfying d(f(x), f(y)) < d(x, y), for any $x, y \in X$, with $x \neq y$, is called a shrinking map. Suppose (X, d) is compact, prove that the equation f(x) = x has unique solution for any shrinking map.
- (15) A collection of subsets $\{A_{\alpha}\}$ of X is called centered (or "satisfies the finite intersection property") if any finite intersection of them is non-empty. Prove that (X, \mathcal{T}_X) is compact iff any centered collection of closed subsets has a non-empty intersection.
- (16) Suppose X is limit point compact.
 - (a) If $X \xrightarrow{f} Y$ is continuous, is f(X) necessarily limit point compact?
 - (b) If $A \subset X$ is closed, is f(A) necessarily closed?
- (17) Let (X, d) be compact, with an open cover $X = \bigcup_{\alpha} \mathcal{U}_{\alpha}$. Prove that there exists $\epsilon > 0$ such that for any $x \in X$ the open $Ball_{\epsilon}(x)$ is contained in at least one \mathcal{U}_{α} .

