## Introduction to Topology, 201.1.0091

Homework 9 Spring 2016 (D.Kerner)

(1) Linear topology on vector spaces.

- Fix a vector space  $V_k$  (of any dimension). An affine subspace of V is the set of the form  $\{v\} + W$ ,
- (a) for some vector  $v \in V$  and some subspace  $W \subseteq V$ . Prove that any (non-empty) intersection of
- affine subspaces is an affine subspace, and similarly for any sum of affine subspaces.(b) A Hausdorff topology on V is called linear if any translations of open sets are open and the local basis (of open neighborhoods) at the origin consists of some linear subspaces. Prove:
  - (i) Any isomorphism of vector spaces preserves the linearity of topology.
  - (ii) The induced topology on any vector subspace is linear.
  - (iii) For any product of vector spaces the product/box topologies are linear.
  - (iv) The closure of any vector/affine subspace of V is a vector/affine subspace. In particular, if an affine subspace is open then it is also closed.
  - (v) A finite dimensional vector space with linear topology is discrete (i.e. the topology is discrete).
  - (vi) Any discrete vector space has a linear topology.
- (c) A vector space with linear topology is called *linearly compact* if for any family of closed affine subspaces, with the property of non-empty finite intersections, the total intersection is non-empty.
  - (i) Prove that the linear compactness is preserved under homemorphisms which are isomorphisms of vector spaces.
  - (ii) V with the discrete (and hence linear) topology is linearly compact iff  $dim(V) < \infty$ .
  - (iii) If V is linearly compact then any closed subspace of V is linearly compact.
  - (iv) Any product of linearly compact vector spaces is linearly compact. (The proof goes along the same lines as the proof of Tychonoff's theorem.)
- (d) Given a system of linear equations,  $\{l_{\alpha}(\{x_{\beta}\})=0\}_{\substack{\alpha\in A,\\\beta\in B}}$  (any number of equations, in any number of variables, over any field k). Prove that the system is solvable iff every finite subsystem of it is solvable.
- (2) Let G = (V, E) be an undirected graph (V-the set of vertices, E-the set of edges). A k-colouring of G is a function  $V \stackrel{col}{\rightarrow} \{1, 2, \dots, k\}$  such that if  $v, v' \in E$  then  $col(v) \neq col(v')$ . A graph is called k-colourable if it admits a k-colouring.
  - Prove that if every finite subgraph of G is k-colourable then G is k-colourable. (Use Tychonoff's theorem.)
- (3) (a) Find the "simplest" metrizable compactifications of  $[-1,0) \cup (0,1]$  for which the following functions extend in a continuous manner: i.  $f(x) = \frac{x}{|x|}$ , ii.  $f(x) = \sin \frac{1}{x}$ , iii. both  $f(x) = \sin \frac{1}{x}$  and  $g(x) = \cos \frac{1}{x}$ .
  - (b) Find the simplest compactification Y of N for which the following functions extend continuously: i.  $f_p(n) = n(mod \ p)$ , for a fixed p. ii. f(n) = sin(n). (You can use the fact: the set partial limits of sin(n) is [-1, 1].)
  - (c) Construct the metrizable compactifications of (0, 1] in which one adds to (0, 1]:
    - i.  $S^1$ , ii. Any letter of English alphabet.
  - (d) Suppose the compactification X of (0, 1] is metrizable. Prove that  $X \setminus (0, 1]$  is connected. In particular there does not exist metrizable compactification where one adds  $1 < n < \infty$  points to (0, 1].
- (4) Let X completely regular, non-compact and  $\beta(X)$  its Stone-Cech compactification.
  - (a) (the maximality of  $\beta(X)$ ) Let Y be an arbitrary compactification of X. Prove that there exists a surjective continuous map  $\beta(X) \to Y$  which is the identity on X.
  - (b) Show that the cardinality of  $\beta(\mathbb{N})$  is at least  $c^c$ , where c = |[0,1]|.
  - (c) Show that X is connected iff  $\beta(X)$  is connected.
  - (d) Suppose X is a discrete space.

(5)

- (i) Show that for any  $A \subset X$  the closures  $\overline{A}$ ,  $\overline{X \setminus A}$  (inside  $\beta(X)$ ) are disjoint.
- (ii) Show that if  $U \subset \beta(X)$  is open then  $\overline{U} \subset \beta(X)$  is open.
- (iii) Show that  $\beta(X)$  is totally disconnected.
- (e) Suppose X is metrizable and  $y \in \beta(X) \setminus X$ . Prove that y is not the limit of a sequence of points in X. In particular if X is non-compact then  $\beta(X)$  is not metrizable.
- (a) Suppose (Y, d) is compact. Prove that  $X \subseteq Y$  is complete iff it is compact iff it is closed.
- (b) Suppose that for some  $\epsilon > 0$  every  $\epsilon$ -ball in the space (X, d) has compact closure. Prove that X is complete. Does this hold if for any  $x \in X$  exists  $\epsilon > 0$  such that  $\overline{Ball_{\epsilon}(x)}$  is compact?
  - (c) Are locally closed/open subspaces of a complete space complete?
  - (d) Prove that an infinite complete space with no isolated points is uncountable.
  - (e) Prove that (X, d) is complete iff  $(X, \bar{d})$  is complete for  $\bar{d} = min(d, 1)$ .
  - (f) Suppose the spaces  $\{(X_i, d_i)\}_{i=1,\dots\infty}$  are complete. Is the space  $(\prod_{i=1}^{\infty} X_i, d)$  complete for  $d(\{x_i\}, \{y_i\}) = \sup\{\frac{\bar{d}_i(x_i, y_i)}{i}\}$ ?

