Partial solutions of the first midterm, Algebraic Structures (201.1.7031) 1.12.2017 Ben Gurion University

(1) Suppose gcd(m, n) = 1, we prove that the groups are isomorphic.

Take the canonical projections, $\mathbb{Z}_{mn\mathbb{Z}} \xrightarrow{\pi_m} \mathbb{Z}_m\mathbb{Z}$ and $\mathbb{Z}_{mn\mathbb{Z}} \xrightarrow{\pi_n} \mathbb{Z}_m\mathbb{Z}$. Define the map $\mathbb{Z}_{mn\mathbb{Z}} \to \mathbb{Z}_m\mathbb{Z} \times \mathbb{Z}_m\mathbb{Z}$, by $g \to (\pi_m(g), \pi_n(g))$. This is a homomorphism of groups, e.g. because π_m, π_n are homomorphisms.

It is injective. (If $(\pi_m(g), \pi_n(g)) = (0, 0)$ then $g \in m\mathbb{Z}/mn\mathbb{Z}$ and $g \in n\mathbb{Z}/mn\mathbb{Z}$, thus $g = 0 \in \mathbb{Z}/mn\mathbb{Z}$. The map is surjective, e.g. by comparing the cardinality of the sets. Thus this map is isomorphism.

Suppose gcd(m,n) > 1, then the groups are not isomorphic. Indeed, $\mathbb{Z}_{mn\mathbb{Z}}$ has an element of order mn, while any element $g \in \mathbb{Z}_{m\mathbb{Z}} \times \mathbb{Z}_{n\mathbb{Z}}$ satisfies: $\frac{mn}{acd(m,n)} \cdot g = 0$.

- (2) (a) Take a non-normal subgroup N < G, suppose it is contained in some normal subgroup, $N < N_1 \lhd G$. Take the canonical projection, $G \xrightarrow{\pi} G/N_1$, then $\pi(N) = \{e\} \lhd G/N_1$.
 - On the other hand, if $N \triangleleft G$ then $\pi(N) \triangleleft \pi(G)$, by a theorem of homomorphisms.
 - (b) A counterexample: $|S_3|$ is divisible by 2, but S_3 contains no normal subgroup of order 2.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- (b) By its definition, $A \in SO(1,1)$ iff $A \in O(1,1)$ and in addition det(A) = 1. And for any $g \in O(1,1)$ holds: $det(g^{-1}Ag) = det(A)$. Thus O(1,1) itself is the normalizer of SO(1,1).
- (c) There are just two equivalence classes of SO(1,1) in O(1,1): $O(1,1) = SO(1,1) \coprod (E \cdot SO(1,1))$. Therefore the quotient group is of order two. Thus $O(1,1)/SO(1,1) \approx \mathbb{Z}/2\mathbb{Z}$.
- (4) As both subgroups are normal, we have $N_1 \cdot N_2 = N_2 \cdot N_1$, hence $\langle N_1, N_2 \rangle = N_1 \cdot N_2$. Furthermore, $N_1 \cap N_2 = \{e\}$, because this subgroup must divide the $gcd(n_1, n_2) = 1$. And because of this we have: $|N_1 \cdot N_2| = |N_1| \cdot |N_2|$.