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(1) (a) Suppose f(x) · g(x) ∈ I, then f(0)g(0) = 0, thus f(0) = 0 or g(0) = 0, thus one of f, g belongs to I. Thus I is a
prime ideal.

(b) Suppose f(x) 6∈ I, then f(0) 6= 0. Note that f(x)− f(0) ∈ I. Therefore (f(x)) + I = (f(0)) + I = R. Thus I is
maximal.

(c) Suppose I = (f(x)), here f(x) is continuous and f(0) = 0. Moreover, f(x) does not vanish at any other point

of (−1, 1). (Otherwise, e.g. x ∈ I is not divisible by f(x).) Then the function f(x)√
|f(x)|

extends continuously to a

function g(x) ∈ C0(−1, 1), and g(x) vanishes at 0. Thus g(x) ∈ I, but g(x) is not divisible by f(x). Therefore
I cannot be generated by just one element.

(2) Note that 36 = 4 · 9. Thus, by the classification theorem of finite abelian groups, G ≈ G4 × G9, with |Gi| = i.
Furthermore, by this same theorem, we have:
(a) either G4 ≈ Z/2Z × Z/2Z or G4 ≈ Z/4Z ,
(b) either G9 ≈ Z/3Z × Z/3Z or G4 ≈ Z/9Z .

Thus G is one of: Z/36Z , Z/18Z × Z/2Z , Z/12Z × Z/3Z , Z/6Z × Z/6Z .
These later groups are pairwise non-isomorphic, this can be checked e.g. by comparing the orders of elements.

(3) (Solution 1.) As was proved in the class: any maximal ideal is prime.
Let a 6= 0 be nilpotent. Fix n such that an = 0 but an−1 6= 0. Then an−1 · a = 0 ∈ I. Thus an−1 ∈ I. Hence

a ∈ I.
(Solution 2.) As was proved in the class: if I ⊂ R is a maximal ideal then R/I is a field.
For any nilpotent element a ∈ R take its image [a] ∈ R/I . The image is nilpotent as well, in a field, thus [a] = 0.

Thus a ∈ I.

(4) (a) Suppose K < G is of order p then the order of φ(K) ≈ K/ker(φ) ∩K divides p. Thus, either φ(K) = {e} or
|φ(K)| = p.

(b) Suppose |G| = pnm, where gcd(p,m) = 1. Let K ∈ Sylp(G), i.e. |K| = pn. Note that ker(φ) < G, thus
|ker(φ)| = pñm̃, for some ñ ≤ n and m̃ | m. Thus |H| = |G/ker(φ) | = pn−ñ mm̃ .

We have: φ(K) ≈ K
K∩ker(φ) . As

(
K ∩ ker(φ)

)
≤ K one has: |K ∩ ker(φ)| = pn

′
, for some n′ ≤ ñ. Thus

|φ(K)| = pn−n
′
. But φ(K) ≤ H, thus n− n′ ≤ n− ñ, i.e. n′ ≥ ñ. Therefore n′ = ñ. Hence φ(K) ∈ Sylp(H).

(5) (a) If R is not a unital ring then R× = ∅ and the statement is trivial. Thus we assume 1 ∈ R.
First we prove: φ(1) = 1. Indeed, present any element of R in the form φ(a), for some a. Then φ(1)φ(a) =
φ(1 · a) = φ(a) = φ(a)φ(1). Thus, by the uniqueness of the unit element, φ(1) = 1.
Now, if a ∈ R× then a−1 ∈ R and thus 1 = φ(a · a−1) = φ(a)φ(a−1), i.e. φ(a)−1 = φ(a−1). Hence φ(R×) = R×.

(b) Note that φ(1) = 1, thus φ(n) = n for any n ∈ Z. Thus φ acts as identity on Q.
(c) As a vector space over Q the ring is: Q < 1 > +Q < x >. Thus, for any φ ∈ Aut(R) it is enough to check its

action on Q < 1 > and Q < x >.
As was shown in (b), φ acts as identity on Q < 1 >.
Note that x2 = 0 ∈ R, therefore φ(x) ∈ (x), i.e. φ(x) = c · x for some c ∈ Q. Therefore any automorphism of R

acts by a · 1 + b · x φ→ a · 1 + bc · x.
It remains to observe that any such map is indeed an automorphism of R. It is a Q-linear map, by construction.
And it is multiplicative, by direct check. Finally, it is invertible iff c 6= 0. Thus, as a set, Aut(R) = Q \ {0}.
Finally, we check the group structure, φc1 ◦ φc2 = φc1·c2 . Therefore Aut(R) = Q \ {0} as a group.


