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(1) (a) Suppose f(x)-g(z) € I, then f(0)g(0) = 0, thus f(0) =0 or g(0) = 0, thus one of f, g belongs to I. Thus I is a
prime ideal.
(b) Suppose f(z) € I, then f(0) # 0. Note that f(z) — f(0) € I. Therefore (f(z))+ I = (f(0))+ 1 = R. Thus I is
maximal.
(¢) Suppose I = (f(z)), here f(z) is continuous and f(0) = 0. Moreover, f(z) does not vanish at any other point

of (—1,1). (Otherwise, e.g. z € I is not divisible by f(z).) Then the function % extends continuously to a

function g(z) € C°(—1,1), and g(x) vanishes at 0. Thus g(x) € I, but g(z) is not divisible by f(z). Therefore
I cannot be generated by just one element.

(2) Note that 36 = 4 -9. Thus, by the classification theorem of finite abelian groups, G ~ G4 x Gy, with |G;| = 1.
Furthermore, by this same theorem, we have:
(a) either G4 = Zhy x Zhy or Gy =~ Z/y7,
(b) either Gy ~ Zf37, X Zf37 or G4 ~ Zjgz,.
Thus G is one of: Zf3e7, Zhsz % Zhz, Lhoz X Zsz, Yez % Yz
These later groups are pairwise non-isomorphic, this can be checked e.g. by comparing the orders of elements.

(3) (Solution 1.) As was proved in the class: any maximal ideal is prime.
Let a # 0 be nilpotent. Fix n such that a” = 0 but a”~! # 0. Then " !-a =0 € I. Thus ¢! € I. Hence
acl.
(Solution 2.) As was proved in the class: if I C R is a maximal ideal then R/ is a field.
For any nilpotent element a € R take its image [a] € R/r. The image is nilpotent as well, in a field, thus [a] = 0.
Thus a € I.

(4) (a) Suppose K < G is of order p then the order of ¢(K) ~ K/ker(¢)n ik divides p. Thus, either ¢(K) = {e} or
lp(K)| = p.
(b) Suppose |G| = p"m, where ged(p,m) = 1. Let K € Syl,(G), i.e. |K| = p". Note that ker(¢) < G, thus
|ker(p)| = p™m, for some @ < n and m | m. Thus |H| = | Glier(s) | = pnhm,

m

We have: ¢(K) =~ ﬁer(@ As (K N ker(¢)) < K one has: |K N ker(¢)] = p™, for some n' < f. Thus
|p(K)| = p"~". But ¢(K) < H, thus n —n’ <n — 7, i.e. n’ > 7. Therefore n’ = fi. Hence ¢(K) € Syl,(H).

(5) (a) If R is not a unital ring then R* = & and the statement is trivial. Thus we assume 1 € R.

First we prove: ¢(1) = 1. Indeed, present any element of R in the form ¢(a), for some a. Then ¢(1)¢(a) =
o(1-a) = ¢(a) = ¢(a)é(1). Thus, by the uniqueness of the unit element, ¢(1) = 1.
Now, if a € R* then a=! € R and thus 1 = ¢(a-a™!) = ¢(a)p(a™?), i.e. d(a)™t = p(a™!). Hence ¢(R*) = R*.

(b) Note that ¢(1) = 1, thus ¢(n) = n for any n € Z. Thus ¢ acts as identity on Q.

(¢) As a vector space over Q the ring is: Q < 1 > +Q < x >. Thus, for any ¢ € Aut(R) it is enough to check its
actionon Q <1 > and Q < x >.
As was shown in (b), ¢ acts as identity on Q < 1 >.
Note that 22 = 0 € R, therefore ¢(x) € (z), i.e. ¢(x) = c-z for some ¢ € Q. Therefore any automorphism of R
actsbya-l+b~x$a~l+bc'x.
It remains to observe that any such map is indeed an automorphism of R. It is a Q-linear map, by construction.
And it is multiplicative, by direct check. Finally, it is invertible iff ¢ # 0. Thus, as a set, Aut(R) = Q\ {0}.
Finally, we check the group structure, ¢¢, © ¢¢, = ¢¢;.c,- Therefore Aut(R) = Q\ {0} as a group.



