Partial solutions of Moed.A, Algebraic Structures
 (201.1.7031) 08.02.2018 Ben Gurion University

(1) (a) A proof: consider the map $G L(n, \mathbb{k}) \xrightarrow{\text { det }} \mathbb{k}^{\times}$. This is a homomorphism of groups. This map is surjective, because any $\lambda \in \mathbb{k}$ is achieved e.g. as $\operatorname{det}\left(\lambda \mathbb{I}_{1 \times 1} \oplus \mathbb{1}_{(n-1) \times(n-1)}\right)$. And the kernel of this map is precisely $S L(n, \mathbb{k})$. Thus $S L(n, \mathbb{k}) \triangleleft G L(n, k)$ and $G L(n, \mathbb{k}) / S L(n, \mathbb{k}) \approx \mathbb{k}^{\times}$.
(b) A counterexample: take the group of quaternions, $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$. One has: $Z\left(Q_{8}\right)=\{ \pm 1\}$ and $Q_{8} / Z\left(Q_{8}\right) \approx \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, i.e. abelian but non-trivial.
(c) As $[G, G]$ is generated by the elements of the form $a b a^{-1} b^{-1}$, it is enough to check that $\phi\left(a b a^{-1} b^{-1}\right)=\mathbb{1}_{H}$. And this is immediate by the properties of homomorphisms.
A counterexample to the second statement: let $G=S_{3}=\left\{1, \sigma, \sigma^{2}, \tau, \tau \sigma, \tau \sigma^{2}\right\}$ and take $H=(1, \tau)$, with its embedding. Note that $H<S_{3}$ is not a normal subgroup.
(2) As $51=3 \cdot 17$ we have by Sylow's theorem (3): the number of 17 -Sylow subgroups of G is of the form $1+17 \mathbb{Z}$ and divides 3 . Thus there is only one 17 -Sylow subgroup, hence it is normal. In the same way, $\operatorname{Syl}_{3}(G)$ consists of just one element, hence $\mathbb{Z} / 3 \mathbb{Z} \triangleleft G$. Thus $\mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 17 \mathbb{Z}$ are normal subgroups of G

These subgroups are mutually disjoint (as $\operatorname{gcd}(3,17)=1$), and $|\mathbb{Z} / 3 \mathbb{Z}| \cdot|\mathbb{Z} / 17 \mathbb{Z}|=|G|$. Thus, as has been proved in homeworks, $G \approx \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 17 \mathbb{Z} \approx \mathbb{Z} / 51 \mathbb{Z}$.
(3) (a) Define $N(a+i b)=a^{2}+b^{2}$. Note that $N(5+7 i)=N(7+5 i)=2 \cdot 37$. Therefore any common divisor c of the two elements satisfies: $N(c)=2$ or $N(c)=37$.
In the first case we get: $c= \pm 1 \pm i$. The second case is realized only by $\pm 1 \pm 6 i, \pm 6 \pm i$.
By direct check, neither of $\pm 1 \pm 6 i, \pm 6 \pm i$ divides neither of $5+7 i, 7+5 i$. And the numbers $\pm 1 \pm i$ divide $5+7 i, 7+5 i$. (Note that $\pm 1 \pm i$ differ by invertibles.) Therefore $\operatorname{gcd}(5+7 i, 7+5 i)$ is either of $\pm 1 \pm i$.
(b) $(R / I$ is an integral domain $) \Longleftrightarrow(\forall a, b \in R,(a+I)(b+I)=I$ implies that $a+I=I$ or $b+I=I) \Longleftrightarrow$ $(\forall a, b \in R, a b \in I$ implies $a \in I$ or $b \in I) \Longleftrightarrow(I$ is a prime ideal in $R)$.
(c) Suppose $J \subset R$ is a prime ideal that contains I. Then $J \ni x^{4}=x \cdot x^{3}$, hence $J \ni x$. Also note that $I \ni y^{4}$, hence $J \ni y$. Thus either $J=(x, y)$, or $J=R$.
(4) (a) Note that $\left(y^{3}-x^{4}\right) \cdot M=\{0\}$, and $y^{3}-x^{4} \in R$ is not a zero divisor. Thus the whole M is torsion.

Note that M is a cyclic module, denote its generator by z. Thus any homomorphism $M \xrightarrow{\phi} R$ is determined by the image of the generator, $\phi(z)$. Note that $\left(y^{3}-x^{4}\right) \phi(z)=\phi\left(\left(y^{3}-x^{4}\right) z\right)=\phi(0)=0 \in R$, i.e. $\phi(z)$ is a zero divisor in R. As R is a integral domain, $\phi(z)=0$. Thus $\operatorname{Hom}(M, R)=\{0\}$.
(b) Solution 1. Recall that $\mathbb{k}[x]$ is a PID, thus A can be brought to the Smith normal form by $A \rightarrow U A V$ for some $U \in G L(m, R), V \in G L(n, R)$.
Thus the given system is equivalent to a system with a diagonal matrix, i.e the equations are $\left\{a_{i} x_{i}=0\right\}$.
Now, as R is an integral domain, if $a_{i} \neq 0$ then $x_{i}=0$, otherwise x_{i} is arbitrary. Thus the set of solutions is a free submodule of $R^{\oplus n}$.
Solution 2. The set of solutions of the system $A \cdot \underline{x}=0$ is a submodule of the module R^{n}. The later is a free module over R. Then, as R is a PID, the set of solution is itself a free module.

