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(1) The polynomial 3x2 + 5x+ 1 is irreducible (as it has no roots in Q). Thus the ideal (3x2 + 5x+ 1) is prime. As Q[x]
is a PID, the ideal is maximal. Therefore the quotient Q[x]/(3x2 + 5x+ 1) is a field.

(2) (a) We claim that Z[1 +
√
−7] is not UFD, hence cannot be a Euclidean domain. Indeed, in Z[1 +

√
−7] one has:

(1 +
√
−7)(1 −

√
−7) = 8 = 2 · 2 · 2. We claim that 2 is irreducible in Z[1 +

√
−7]. Indeed, use the standard

norm N(a + b
√
−7) =

√
a2 + 7b2 to get: (a + b

√
−7) | 2 iff b = 0 and a ∈ ±1,±2.

On the other hand, neither of (1 +
√
−7), (1−

√
−7) is divisible by 2.

(b) Obviously 2 ∈
√
I. Suppose a + bi ∈

√
I. We can reduce modulo 2. If a is even then (2) + (a + bi) = (2) + (bi).

Similarly for the case of b even. Therefore the only case to check is, whether ±1 ± i ∈
√
I. Note that these

elements are related by multiplication by invertibles (by ±1 and by ±i). Thus it is enough to consider just 1+ i.

And (1 + i)2 = 2i ∈ I, hence 1 + i ∈
√
I. Therefore

√
I is generated by {2,±1 ± i}. Note that this is not a

minimal system of generators, as (1 + i)(1− i) = 2. Thus as a minimal system of generators one can take either
of 1 + i, 1− i, −1 + i, −1− i.

(3) (a) Solution 1. We look for the decomposition g = xy in the form x = ga, y = gb. Then the exponents must satisfy:

a+ b = 1, as | st, at | st. Thus a = tã and b = sb̃, with tã+ sb̃ = 1. And this later condition is resolvable as s, t
are coprime. This gives the needed decomposition.

Solution 2. Consider the subgroup 〈g〉 of G. By the assumptions: 〈g〉 ≈ Z/stZ
gcd(s,t)=1
≈ Z/sZ × Z/tZ . Fix some

generators, < as >= Z/sZ and < at >= Z/tZ . Then the element as · at generates the whole Z/stZ , being of order
st. Therefore g = (asat)

n, for some n ∈ N. Thus g = (as)
n · (at)n is the needed decomposition. Note that

ord(ans ) = s and ord(ant ) = t, because gcd(n, s) = 1 = gcd(n, t).
(b) Suppose there are two such decompositions, g = x1y1 = x2y2. Then ys2 = gs = ys1 and xt

2 = gt = xt
1. As

gcd(s, t) = 1 there exists the presentation s · s∨ + t · t∨ = 1. Thus we get ys·s
∨

2 = ys·s
∨

1 . As yt2 = 1 = yt1 we get:
y2 = y1. And similarly x2 = x1.

(4) Denote by R× the subset of invertible elements of R, thus R× is a group. We prove: Up/Up(1)
∼−→ (R×)n.

proof: Note, if A ∈ Up then all the diagonal entries of A belong to R×. Consider the map Up/Up(1) →
R× × · · · ×R×︸ ︷︷ ︸

n

defined by A · Up(1) → (a11, . . . , ann). This map is well defined, as multiplying by elements of

Up(1) does not change the diagonal. This map is multiplicative. This map is surjective.
To check that the map is injective we prove: any element of Up/Up(1) has a diagonal representative. In other

words, for any A ∈ Up exists B ∈ Up(1) such that AB is a diagonal matrix. It is simpler to make this transition

by steps. Take B1 =


1 −a12

a11
0 ·

0 1 −a23

a2
0

. . . . . . . . .

. . . . . . . . . 1

. Then AB1 has zeros in all the entries (i, i + 1). Now take B2 =


1 0 −a13

a11
0 ·

0 1 0 −a24

a2
0

. . . . . . . . .

. . . . . . . . . 1

. Then AB1B2 has zeros in all the entries {(i, i + 1)}, {(i, i + 2)}. And so on.

Summarizing, we have constructed a homomorphism of groups, which is injective and surjective, hence an isomor-
phism.

(5) Recall that over a PID any submodule of a free module is free. Therefore M is free and minimally generated by 3
elements. Thus rank(M) = 3.

(6) Fix the cardinalities: |G| = pn ·m, |K| = pn, |H| = pl · m̃, for some l ≤ n and some m̃ | m. Apply the standard
formula |H ·K| · |H ∩K| = |H| · |K|. Note that H ·K ≤ G, thus |H ·K| = pñm′ for some ñ ≤ n and m′ | m. Thus

we get: |H ∩K| = plm̃pn

pñm′ . We must have m̃ = m′, as H ∩K ≤ K, and we must have l + n− ñ ≤ l, as H ∩K ≤ H.

Therefore n = ñ and we get: |H ∩K| = pl, hence H ∩K ∈ Sylp(H).


