- (1) The polynomial $3x^2 + 5x + 1$ is irreducible (as it has no roots in \mathbb{Q}). Thus the ideal $(3x^2 + 5x + 1)$ is prime. As $\mathbb{Q}[x]$ is a PID, the ideal is maximal. Therefore the quotient $\mathbb{Q}[x]/(3x^2 + 5x + 1)$ is a field.
- (2) (a) We claim that $\mathbb{Z}[1 + \sqrt{-7}]$ is not UFD, hence cannot be a Euclidean domain. Indeed, in $\mathbb{Z}[1 + \sqrt{-7}]$ one has: $(1 + \sqrt{-7})(1 - \sqrt{-7}) = 8 = 2 \cdot 2 \cdot 2$. We claim that 2 is irreducible in $\mathbb{Z}[1 + \sqrt{-7}]$. Indeed, use the standard norm $N(a + b\sqrt{-7}) = \sqrt{a^2 + 7b^2}$ to get: $(a + b\sqrt{-7}) | 2$ iff b = 0 and $a \in \pm 1, \pm 2$. On the other hand, neither of $(1 + \sqrt{-7}), (1 - \sqrt{-7})$ is divisible by 2.
 - (b) Obviously 2 ∈ √I. Suppose a + bi ∈ √I. We can reduce modulo 2. If a is even then (2) + (a + bi) = (2) + (bi). Similarly for the case of b even. Therefore the only case to check is, whether ±1 ± i ∈ √I. Note that these elements are related by multiplication by invertibles (by ±1 and by ±i). Thus it is enough to consider just 1 + i. And (1 + i)² = 2i ∈ I, hence 1 + i ∈ √I. Therefore √I is generated by {2, ±1 ± i}. Note that this is not a minimal system of generators, as (1 + i)(1 i) = 2. Thus as a minimal system of generators one can take either of 1 + i, 1 i, -1 + i, -1 i.
- (3) (a) Solution 1. We look for the decomposition g = xy in the form $x = g^a$, $y = g^b$. Then the exponents must satisfy: a + b = 1, $as \mid st$, $at \mid st$. Thus $a = t\tilde{a}$ and $b = s\tilde{b}$, with $t\tilde{a} + s\tilde{b} = 1$. And this later condition is resolvable as s, t are coprime. This gives the needed decomposition.

Solution 2. Consider the subgroup $\langle g \rangle$ of G. By the assumptions: $\langle g \rangle \approx \mathbb{Z}/_{st\mathbb{Z}} \stackrel{gcd(s,t)=1}{\approx} \mathbb{Z}/_s\mathbb{Z} \times \mathbb{Z}/_{t\mathbb{Z}}$. Fix some generators, $\langle a_s \rangle = \mathbb{Z}/_s\mathbb{Z}$ and $\langle a_t \rangle = \mathbb{Z}/_{t\mathbb{Z}}$. Then the element $a_s \cdot a_t$ generates the whole $\mathbb{Z}/_{st\mathbb{Z}}$, being of order st. Therefore $g = (a_s a_t)^n$, for some $n \in \mathbb{N}$. Thus $g = (a_s)^n \cdot (a_t)^n$ is the needed decomposition. Note that $ord(a_s^n) = s$ and $ord(a_t^n) = t$, because gcd(n, s) = 1 = gcd(n, t).

- (b) Suppose there are two such decompositions, $g = x_1y_1 = x_2y_2$. Then $y_2^s = g^s = y_1^s$ and $x_2^t = g^t = x_1^t$. As gcd(s,t) = 1 there exists the presentation $s \cdot s^{\vee} + t \cdot t^{\vee} = 1$. Thus we get $y_2^{s \cdot s^{\vee}} = y_1^{s \cdot s^{\vee}}$. As $y_2^t = 1 = y_1^t$ we get: $y_2 = y_1$. And similarly $x_2 = x_1$.
- (4) Denote by R^{\times} the subset of invertible elements of R, thus R^{\times} is a group. We prove: $Up/Up^{(1)} \xrightarrow{\sim} (R^{\times})^n$. proof: Note, if $A \in Up$ then all the diagonal entries of A belong to R^{\times} . Consider the map $Up/Up^{(1)} \rightarrow R^{\times} \times \cdots \times R^{\times}$ defined by $A \cdot Up^{(1)} \rightarrow (a_{11}, \ldots, a_{nn})$. This map is well defined, as multiplying by elements of n

 $Up^{(1)}$ does not change the diagonal. This map is multiplicative. This map is surjective.

To check that the map is injective we prove: any element of $Up/Up^{(1)}$ has a diagonal representative. In other words, for any $A \in Up$ exists $B \in Up^{(1)}$ such that AB is a diagonal matrix. It is simpler to make this transition $\begin{bmatrix} 1 & -\frac{a_{12}}{a_{11}} & 0 & \cdot \end{bmatrix}$

words, for any $H \in \mathcal{C}(p)$ cause $B_1 = \begin{bmatrix} 1 & -\frac{a_{12}}{a_{11}} & 0 & \cdot \\ 0 & 1 & -\frac{a_{22}}{a_2} & 0 \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ 0 & 1 & 0 & -\frac{a_{13}}{a_{11}} & 0 & \cdot \\ 0 & 1 & 0 & -\frac{a_{24}}{a_2} & 0 \\ \cdots & \cdots & \cdots & 1 \end{bmatrix}$. Then AB_1 has zeros in all the entries $\{(i, i+1)\}, \{(i, i+2)\}$. And so on.

Summarizing, we have constructed a homomorphism of groups, which is injective and surjective, hence an isomorphism.

- (5) Recall that over a PID any submodule of a free module is free. Therefore M is free and minimally generated by 3 elements. Thus rank(M) = 3.
- (6) Fix the cardinalities: $|G| = p^n \cdot m$, $|K| = p^n$, $|H| = p^l \cdot \tilde{m}$, for some $l \leq n$ and some $\tilde{m} \mid m$. Apply the standard formula $|H \cdot K| \cdot |H \cap K| = |H| \cdot |K|$. Note that $H \cdot K \leq G$, thus $|H \cdot K| = p^{\tilde{n}}m'$ for some $\tilde{n} \leq n$ and $m' \mid m$. Thus we get: $|H \cap K| = \frac{p^l \tilde{m}p^n}{p^{\tilde{n}}m'}$. We must have $\tilde{m} = m'$, as $H \cap K \leq K$, and we must have $l + n \tilde{n} \leq l$, as $H \cap K \leq H$. Therefore $n = \tilde{n}$ and we get: $|H \cap K| = p^l$, hence $H \cap K \in Syl_p(H)$.