Algebraic Structures: Solutions to Homework 2

written by: Motke Porat

November 2017

1 Question 1.

1.1 (f):

Let $n \in \mathbb{Z}_{>0}$ and its decomposition as a product of powers of primes given by

$$
n=\prod_{i=1}^{k} p_{i}^{n_{i}}=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}
$$

We will show that $\left(\mathbb{Z}_{n},+, 0\right) \approx \prod_{i=1}^{k}\left(\mathbb{Z}_{p_{i}^{n_{i}}},+, 0\right)=\left(\mathbb{Z}_{p_{1}^{n_{1}}},+, 0\right) \times \ldots \times\left(\mathbb{Z}_{p_{k}^{n_{k}}},+, 0\right)$ by building an explicit isomorphism between the two groups: let

$$
\eta:\left(\mathbb{Z}_{n},+, 0\right) \rightarrow\left(\mathbb{Z}_{p_{1}^{n_{1}}},+, 0\right) \times \ldots \times\left(\mathbb{Z}_{p_{k}^{n_{k}}},+, 0\right)
$$

defined by

$$
\eta(m)=\left(m \quad \bmod p_{1}^{n_{1}}, \ldots, m \quad \bmod p_{k}^{n_{k}}\right)
$$

The mapping η is $1-1$: If $m_{1}, m_{2} \in \mathbb{Z}_{n}$ and $\eta\left(m_{1}\right)=\eta\left(m_{2}\right)$, then

$$
\left(m_{1} \quad \bmod p_{1}^{n_{1}}, \ldots, m_{1} \quad \bmod p_{k}^{n_{k}}\right)=\left(m_{2} \quad \bmod p_{1}^{n_{1}}, \ldots, m_{2} \quad \bmod p_{k}^{n_{k}}\right)
$$

and hence $m_{1}=m_{2}\left(\bmod p_{i}^{n_{i}}\right)$ for every $1 \leq i \leq k$, i.e.,

$$
p_{i}^{n_{i}} \mid m_{1}-m_{2}, \quad \forall 1 \leq i \leq k
$$

but since p_{1}, \ldots, p_{k} are all distinct prime numbers, it implies that

$$
n=p_{1}^{n_{1}} \cdot \ldots \cdot p_{k}^{n_{k}} \mid m_{1}-m_{2}
$$

therefore $m_{1}=m_{2}(\bmod n)$ and η is $1-1$.
The mapping η is onto: From the Chinese reminder theorem, for every r_{1}, \ldots, r_{p} such that $0 \leq r_{1} \leq p_{1}^{n_{1}}, \ldots, 0 \leq r_{k} \leq p_{k}^{n_{k}}$ there exists an integer m for which

$$
m=r_{i}\left(\quad \bmod p_{i}^{n_{i}}\right), \quad \forall 1 \leq i \leq k
$$

since $p_{1}^{n_{1}}, \ldots, p_{k}^{n_{k}}$ are all coprime (as powers of distince prime numbers)! Therefore, for every $\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{Z}_{p_{1}^{n_{1}}} \times \ldots \times \mathbb{Z}_{p_{k}^{n_{k}}}$ we found $m \in \mathbb{Z}_{n}$ such that-

$$
\eta(m)=\left(m \quad \bmod p_{1}^{n_{1}}, \ldots, m \quad \bmod p_{k}^{n_{k}}\right)=\left(r_{1}, \ldots, r_{k}\right)
$$

The mapping η is a homomorphism: It is easy to see that if $m_{1}, m_{2} \in \mathbb{Z}_{n}$, then

$$
\begin{aligned}
\eta\left(m_{1}+m_{2}\right) & =\left(\left(m_{1}+m_{2}\right) \quad \bmod p_{1}^{n_{1}}, \ldots,\left(m_{1}+m_{2}\right) \bmod p_{k}^{n_{k}}\right) \\
& =\left(m_{1} \bmod p_{1}^{n_{1}}, \ldots, m_{1} \quad \bmod p_{k}^{n_{k}}\right)+\left(\begin{array}{ll}
m_{2} & \bmod p_{1}^{n_{1}}, \ldots, m_{2} \\
& \left.\bmod p_{k}^{n_{k}}\right) \\
& =\eta\left(m_{1}\right)+\eta\left(m_{2}\right)
\end{array}\right.
\end{aligned}
$$

Example 1.1 (the case $\mathbb{Z}_{10} \approx \mathbb{Z}_{2} \times \mathbb{Z}_{5}$) let $n=10=2 \cdot 5$, so $p_{1}=2$, $p_{2}=$ $5, n_{1}=1, n_{2}=1, k=2$. The isomorphism between \mathbb{Z}_{10} and $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$ is given by-

$$
\eta(m)=\left(\begin{array}{ll}
m & \bmod 2, m \quad \bmod 5
\end{array}\right)
$$

and explicitly-

$$
\begin{aligned}
& \eta(0)=(0,0), \eta(1)=(1,1), \eta(2)=(0,2), \eta(3)=(1,3), \eta(4)=(0,4) \\
& \eta(5)=(1,0), \eta(6)=(0,1), \eta(7)=(1,2), \eta(8)=(0,3), \eta(9)=(1,4)
\end{aligned}
$$

$1.2(\mathrm{~g}):$ No, and here is the proof:

Let G be an infinite cyclic group. By the definition of cyclic groups- there exists $g \in G$ for which $G=\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$. We shall consider the mapping $\phi: \mathbb{Z} \rightarrow g$ defined by

$$
\phi(n)=g^{n}
$$

It is clear (as G is cyclic) that ϕ is onto G and therefore $|\mathbb{Z}| \geq|G|$ and that proves that $|G|$ has to be countable.

1.3 (h):

Let \mathbb{K} be a field with $\operatorname{char}(\mathbb{K})=0$ and assume that its multiplicative group $\mathbb{K}^{\times}=\mathbb{K} \backslash\{0\}$ is cyclic, so there exists $g \in \mathbb{K}^{\times}$for which $\mathbb{K}^{\times}=\langle g\rangle$. As $1+1 \neq 0$ and $1+1+1 \neq 0$, there exists $n, m \in \mathbb{Z}$ such that $2:=1+1=g^{n}$ and $3:=1+1+1=g^{m}$. Therefore,

$$
3^{n}=\left(g^{m}\right)^{n}=g^{n m}=\left(g^{n}\right)^{m}=2^{m}
$$

and that is a contradiction. (Remark: that proof is working with any two other different prime numbers p_{1}, p_{2} instead of 2,3)

1.4 (i): No, and here is the proof:

Suppose there exists a cyclic group G with the property that for every $n \in$ $\mathbb{N} \backslash\{0,1\}$ there exists $a \in G \backslash\{e\}$ for which $a^{n}=e$. We notice two cases:

- If G is finite: denote by n_{1}, \ldots, n_{m} the orders of all elements of G and let $n=1+n_{1} \cdot \ldots \cdot n_{m}$. Then, for every $a \in G \backslash\{e\}$ we have

$$
a^{n}=a^{1+n_{1} \ldots n_{m}}=a \cdot a^{n_{1} \ldots n_{m}}=a \neq e
$$

so we found an integer n that contradicts our assumption! (in this case we did not even use the fact that G is cyclic)

- If G is infinite, then there exists $g \in G$ such that $G=\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$ and the order of the element g is not finite, or in other words

$$
g^{n} \neq e
$$

for any $0 \neq n \in \mathbb{Z}$. By the assumption, there exists $a \in G \backslash\{e\}$ such that $a^{2}=e$, but $G=\langle g\rangle$ so we can find $0 \neq m \in \mathbb{Z}$ such that $a=g^{m}$ and hence $e=a^{2}=\left(g^{m}\right)^{2}=g^{2 m}$. We found that

$$
g^{2 m}=e, \quad 2 m \neq 0
$$

and that is a contradiction.

2 Question 2.

2.1 (a): No, here is a counterexample:

Let G be any infinite (countable will work here) product of copies of $\left(\mathbb{Z}_{2},+, 0\right)$, say

$$
G=\prod_{i=1}^{\infty} \mathbb{Z}_{2}
$$

So G is of order $2^{|\mathbb{N}|}=2^{\aleph_{0}}>\aleph_{0}$ that is uncountable and all the elements of G are of order 2 .

2.2 (b):

Let V be a vector space over a field \mathbb{K} that is finite dimensional $\operatorname{dim} V=n<\infty$. Recall that $G L_{\mathbb{K}}(V)=\{\phi: V \rightarrow V \mid \phi$ is automorphism $\}$ and let us show it is a group with respect to the operation of composition:

- If $\phi_{1}, \phi_{2} \in G L_{\mathbb{K}}(V)$, then $\phi_{1} \circ \phi_{2}: V \rightarrow V$ is an automorphism of v and so $\phi_{1} \circ \phi_{2} \in G L_{\mathbb{K}}(V)$.
- If $\phi_{1}, \phi_{2}, \phi_{3} \in G L_{\mathbb{K}}(V)$, then clearly

$$
\phi_{1} \circ\left(\phi_{2} \circ \phi_{3}\right)=\left(\phi_{1} \circ \phi_{2}\right) \circ \phi_{3}
$$

- The identity mapping $i d: V \rightarrow V$ is in $G L_{\mathbb{K}}(V)$ and $\phi \circ i d=i d \circ \phi$ for every $\phi \in G L_{\mathbb{K}}(V)$.
- If $\phi \in G L_{\mathbb{K}}(V)$, then as ϕ is $1-1$ and onto V, the inverse mapping ϕ^{-1} exists and it is an automorphism of V, so $\phi^{-1} \in G L_{\mathbb{K}}(V)$.

Now we will show that $G L_{\mathbb{K}}(V)=G L_{n}(V)$: Let $b=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V over the field \mathbb{K}. For every $\phi \in G L_{\mathbb{K}}(V)$ recall that $[\phi]_{B}$ is the representing matrix of ϕ with respect to B, given by the definition

$$
\phi\left(\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}\right)=[\phi]_{B} \cdot\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right), \quad \forall \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}
$$

Define a mapping $\psi: G L_{\mathbb{K}}(V) \rightarrow G L_{n}(\mathbb{K})$ in the following way

$$
\psi(\phi):=[\phi]_{B}
$$

The mapping ψ is an isomorphism between the groups $G L_{\mathbb{K}}(V)$ and $G L_{n}(\mathbb{K})$:

- If $\psi\left(\phi_{1}\right)=\psi\left(\phi_{2}\right)$ for some $\phi_{1}, \phi_{2} \in G L_{\mathbb{K}}(V)$, then $\left[\phi_{1}\right]_{B}=\left[\phi_{2}\right]_{B}$ and then for every $v \in V$, there exists $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$ such that $v=\alpha_{1} e_{1}+. .+\alpha_{n} e_{n}$,

$$
\begin{aligned}
\phi_{1}(v) & =\phi_{1}\left(\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}\right)=\left[\phi_{1}\right]_{B}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
& =\left[\phi_{2}\right]_{B}\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\phi_{2}\left(\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}\right)=\phi_{2}(v)
\end{aligned}
$$

i.e., $\phi_{1}=\phi_{2}$ and the mapping ψ is $1-1$.

- For every $A \in G L_{n}(\mathbb{K})$, define $\phi_{A}: V \rightarrow V$ by

$$
\phi_{A}(v)=A[v]_{B}=A\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right), \quad \forall v=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n} \in V
$$

As A is invertible matrix, it is easily seen that ϕ_{A} is an automorphism of V, i.e., that $\phi_{A} \in G L_{\mathbb{K}}(V)$ and also that

$$
\psi\left(\phi_{A}\right)=\left[\phi_{A}\right]_{B}=A
$$

so the mapping ψ is onto $G L_{n}(\mathbb{K})$.

- For every $\phi_{1}, \phi_{2} \in G L_{\mathbb{K}}(V)$, we have

$$
\psi\left(\phi_{1} \circ \phi_{2}\right)=\left[\phi_{1} \circ \phi_{2}\right]_{B}=\left[\phi_{1}\right]_{B}\left[\phi_{2}\right]_{B}=\psi\left(\phi_{1}\right) \psi\left(\phi_{2}\right)
$$

2.3 (e):

Recall that if $S=\left\{x_{\alpha}\right\}_{\alpha \in A}$ then $\langle S\rangle=\left\{x_{\alpha_{1}}^{ \pm 1} \cdot \ldots \cdot x_{\alpha_{n}}^{ \pm 1}: n \in \mathbb{N}\right\}$ is a subgroup of G and that $S \subset\langle S\rangle$.

- For every $H_{\beta} \leq G$ such that $S \subset H_{\beta}$, as H_{β} is a group then H_{β} must contain all products of elements and inverses of elements from S, that means $\langle S\rangle \subset H_{\beta}$ and therefore

$$
\langle S\rangle \subset \bigcap_{S \subset H_{\beta} \leq G} H_{\beta} .
$$

- As $\langle S\rangle \leq G$ and $S \subset\langle S\rangle$, one of the $H_{\beta}^{\prime} s$ is equal to $\langle S\rangle$, then

$$
\bigcap_{S \subset H_{\beta} \leq G} H_{\beta} \subset\langle S\rangle
$$

2.4 (f):

We will show two examples as required.

- Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ the product of the group $\left(\mathbb{Z}_{2},+, 0\right)$ with itself, $H_{1}=$ $\langle(1,0)\rangle$ and $H_{2}=\langle(0,1)\rangle$. Clearly $H_{1}, H_{2} \leq G$ as they are the subgroups generated by an element of $G, H_{1} \neq H_{2}$ as $(1,0) \in H_{1}$ but $(1,0) \notin H_{2}$ and $H_{1} \approx H_{2}$ as one can easily consider the isomorphism from H_{1} to H_{2} given by

$$
\phi((1,0))=(0,1), \phi((0,0))=(0,0)
$$

or using a more general fact that any two groups of rder 2 are isomorphic.

- Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, H_{1}=\langle(1,0,0)\rangle$ and $H_{2}=\{0\} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Clearly $H_{1} \leq G$ as a cyclic subgroup of G, whereas $H_{2} \leq G$ since $\{0\} \leq \mathbb{Z}_{4}$ and $\left|H_{1}\right|=\left|H_{2}\right|=4$. Finally, $H_{1} \nsim H_{2}$ can be easily seen as H_{1} contains an element of order 4 (for example $(1,0,0)$) and if $H_{!} \approx H_{2}$ then also H_{2} contains an element of order 4 , which is clearly not true.

3 Question 4.

3.1 (c):

Denote $K_{n}=\{1, \ldots, n\}$. Let $\sigma \in S_{n}$ be any permutation.

- If $\sigma(x)=x$ for all $x \in K_{n}$, then $\sigma=(1)$ and it is cyclic.
- If $\sigma \neq(1)$, let a_{1} be the smallest number satisfies $\sigma\left(a_{1}\right) \neq a_{1}$. Write the list

$$
\begin{array}{r}
\sigma\left(a_{1}\right)=a_{2} \\
\sigma\left(a_{2}\right)=a_{3} \\
\vdots \\
\sigma\left(a_{j}\right)=a_{j+1}
\end{array}
$$

As K_{n} is finite, there exists i such that $\sigma\left(a_{i}\right)$ is equal to one of the values a_{1}, \ldots, a_{i}. Let k be the smallest number i with this property. So we know that $\sigma\left(a_{k}\right)=a_{j}$ for some $1 \leq j \leq k$. We will show that $j=1$: otherwise, $j>1$ and then $\sigma\left(a_{k-1}\right)=a_{k}, \sigma\left(a_{j-1}\right)=a_{j}$ imply that

$$
\sigma\left(a_{j-1}\right)=a_{j}=\sigma\left(a_{k}\right)=\sigma\left(\sigma\left(a_{k-1}\right)\right)
$$

ad hence $a_{j-1}=\sigma\left(a_{k-1}\right)$, as σ is $1-1$. But that is a contradiction to the minimality of k, and therefore $j=1$. Then $\sigma\left(a_{k}\right)=a_{1}$ and we got k distinct elements a_{1}, \ldots, a_{k} such that $\sigma\left(a_{1}\right)=a_{2}, \ldots, \sigma\left(a_{k}\right)=a_{1}$, i.e., the set a_{1}, \ldots, a_{k} determines one cyclic $\sigma_{1}=\left(a_{1}, \ldots, a_{k}\right)$ in the requested product formula for σ.

- If $\sigma(b)=b$ for all $b \in K_{n} \backslash\left\{a_{1}, \ldots, a_{k}\right\}$, then $\sigma=\left(a_{1}, \ldots, a_{k}\right)$ is a cyclic.
- Otherwise, let $b_{1} \in K_{n} \backslash A_{1}$ satisfies $\sigma\left(b_{1}\right) \neq b_{1}$ and in a similar way construct a cyclic σ_{2} of the form $\sigma=\left(b_{1}, b_{2}, \ldots, b_{t}\right)$.
- In every step we start to construct a cyclic from an element $x \in K_{n}$ which does not appear in any of the previous cycles that satisfies $\sigma(x) \neq x$. This process will end after finitely any steps, as K_{n} is finite and in every step we omit at least two elements from K_{n}. Clearly, all the cycles we get at the end of the process, say $\sigma_{1}, \ldots, \sigma_{r}$ are all disjoint and that

$$
\sigma=\sigma_{1} \cdot \ldots \cdot \sigma_{r}
$$

- As any two disjoint cycles are commutating and the order of a cyclic is equal to its length, it follows that the order of $\sigma=\sigma_{1} \cdot \ldots \cdot \sigma_{r}$ is equal to the smallest common multiple of all the orders $\operatorname{ord}\left(\sigma_{1}\right), \ldots, \operatorname{ord}\left(\sigma_{r}\right)$, i.e.,

$$
\operatorname{ord}(\sigma)=\left[\left|\sigma_{1}\right|, \ldots,\left|\sigma_{r}\right|\right] .
$$

3.2 (d):

- S_{n} is of order $n!$.
- The number of all of cycles in S_{n} of length k is given by

$$
\binom{n}{k}(k-1)!:
$$

to get all cycles of the form $\left(a_{1}, \ldots, a_{k}\right)$ one should choose k elements out of $\{1, \ldots, n\}$-there are $\binom{n}{k}$ many such choices, however there are k ways to describe the same cyclic

$$
\left(a_{1}, \ldots, a_{k}\right)=\left(a_{2}, \ldots, a_{k}, a_{1}\right)=\ldots=\left(a_{k}, a_{1}, \ldots, a_{k-1}\right)
$$

so one should also fix the first element a_{1} on the cycle and then you have $(k-1)$! ways to get all the possible cycles consists of a_{2}, \ldots, a_{k}.

