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1 Question 1.

1.1 (f):

Let n ∈ Z>0 and its decomposition as a product of powers of primes given by

n =
k∏

i=1

pni
i = pn1

1 ...pnk

k .

We will show that (Zn, +, 0) ≈
∏k

i=1(Zp
ni
i

, +, 0) = (Zp
n1
1

, +, 0)×...×(Zp
nk
k

, +, 0)
by building an explicit isomorphism between the two groups: let

η : (Zn, +, 0) → (Zp
n1
1

, +, 0) × ... × (Zp
nk
k

, +, 0)

defined by
η(m) = (m mod pn1

1 , ...,m mod pnk

k ).

The mapping η is 1 − 1: If m1,m2 ∈ Zn and η(m1) = η(m2), then

(m1 mod pn1
1 , ...,m1 mod pnk

k ) = (m2 mod pn1
1 , ...,m2 mod pnk

k )

and hence m1 = m2( mod pni
i ) for every 1 ≤ i ≤ k, i.e.,

pni
i | m1 − m2, ∀1 ≤ i ≤ k

but since p1, ..., pk are all distinct prime numbers, it implies that

n = pn1
1 ∙ ... ∙ pnk

k | m1 − m2

therefore m1 = m2( mod n) and η is 1 − 1.

The mapping η is onto: From the Chinese reminder theorem, for every r1, ..., rp

such that 0 ≤ r1 ≤ pn1
1 , ..., 0 ≤ rk ≤ pnk

k there exists an integer m for which

m = ri( mod pni
i ), ∀1 ≤ i ≤ k,

since pn1
1 , ..., pnk

k are all coprime (as powers of distince prime numbers)!
Therefore, for every (r1, ..., rk) ∈ Zp

n1
1

× ... × Zp
nk
k

we found m ∈ Zn such
that-

η(m) = (m mod pn1
1 , ...,m mod pnk

k ) = (r1, ..., rk).
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The mapping η is a homomorphism: It is easy to see that if m1,m2 ∈ Zn,
then

η(m1 + m2) = ((m1 + m2) mod pn1
1 , ..., (m1 + m2) mod pnk

k )

= (m1 mod pn1
1 , ...,m1 mod pnk

k ) + (m2 mod pn1
1 , ...,m2 mod pnk

k )

= η(m1) + η(m2).

Example 1.1 (the case Z10 ≈ Z2 × Z5) let n = 10 = 2 ∙ 5, so p1 = 2, p2 =
5, n1 = 1, n2 = 1, k = 2. The isomorphism between Z10 and Z2 ×Z5 is given by-

η(m) = (m mod 2,m mod 5)

and explicitly-

η(0) = (0, 0), η(1) = (1, 1), η(2) = (0, 2), η(3) = (1, 3), η(4) = (0, 4),

η(5) = (1, 0), η(6) = (0, 1), η(7) = (1, 2), η(8) = (0, 3), η(9) = (1, 4).

1.2 (g): No, and here is the proof:

Let G be an infinite cyclic group. By the definition of cyclic groups- there exists
g ∈ G for which G = 〈g〉 = {gn : n ∈ Z}. We shall consider the mapping
φ : Z→ g defined by

φ(n) = gn.

It is clear (as G is cyclic) that φ is onto G and therefore |Z| ≥ |G| and that
proves that |G| has to be countable.

1.3 (h):

Let K be a field with char(K) = 0 and assume that its multiplicative group
K× = K \{0} is cyclic, so there exists g ∈ K× for which K× = 〈g〉. As 1+1 6= 0
and 1 + 1 + 1 6= 0, there exists n,m ∈ Z such that 2 := 1 + 1 = gn and
3 := 1 + 1 + 1 = gm. Therefore,

3n = (gm)n = gnm = (gn)m = 2m

and that is a contradiction. (Remark: that proof is working with any two other
different prime numbers p1, p2 instead of 2, 3)

1.4 (i): No, and here is the proof:

Suppose there exists a cyclic group G with the property that for every n ∈
N \ {0, 1} there exists a ∈ G \ {e} for which an = e. We notice two cases:

• If G is finite: denote by n1, ..., nm the orders of all elements of G and let
n = 1 + n1 ∙ ... ∙ nm. Then, for every a ∈ G \ {e} we have

an = a1+n1...nm = a ∙ an1...nm = a 6= e

so we found an integer n that contradicts our assumption! (in this case
we did not even use the fact that G is cyclic)
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• If G is infinite, then there exists g ∈ G such that G = 〈g〉 = {gn : n ∈ Z}
and the order of the element g is not finite, or in other words

gn 6= e

for any 0 6= n ∈ Z. By the assumption, there exists a ∈ G \ {e} such that
a2 = e, but G = 〈g〉 so we can find 0 6= m ∈ Z such that a = gm and
hence e = a2 = (gm)2 = g2m. We found that

g2m = e, 2m 6= 0

and that is a contradiction.

2 Question 2.

2.1 (a): No, here is a counterexample:

Let G be any infinite (countable will work here) product of copies of (Z2, +, 0),
say

G =
∞∏

i=1

Z2.

So G is of order 2|N| = 2ℵ0 > ℵ0 that is uncountable and all the elements of G
are of order 2.

2.2 (b):

Let V be a vector space over a field K that is finite dimensional dim V = n < ∞.
Recall that GLK(V ) = {φ : V → V |φ is automorphism} and let us show it is a
group with respect to the operation of composition:

• If φ1, φ2 ∈ GLK(V ), then φ1 ◦ φ2 : V → V is an automorphism of v and
so φ1 ◦ φ2 ∈ GLK(V ).

• If φ1, φ2, φ3 ∈ GLK(V ), then clearly

φ1 ◦ (φ2 ◦ φ3) = (φ1 ◦ φ2) ◦ φ3.

• The identity mapping id : V → V is in GLK(V ) and φ ◦ id = id ◦ φ for
every φ ∈ GLK(V ).

• If φ ∈ GLK(V ), then as φ is 1 − 1 and onto V , the inverse mapping φ−1

exists and it is an automorphism of V , so φ−1 ∈ GLK(V ).

Now we will show that GLK(V ) = GLn(V ): Let b = {e1, ..., en} be a basis
of V over the field K. For every φ ∈ GLK(V ) recall that [φ]B is the representing
matrix of φ with respect to B, given by the definition

φ(α1e1 + ... + αnen) = [φ]B ∙






α1

...
αn




 , ∀α1, ..., αn ∈ K.

3



Define a mapping ψ : GLK(V ) → GLn(K) in the following way

ψ(φ) := [φ]B .

The mapping ψ is an isomorphism between the groups GLK(V ) and GLn(K):

• If ψ(φ1) = ψ(φ2) for some φ1, φ2 ∈ GLK(V ), then [φ1]B = [φ2]B and then
for every v ∈ V , there exists α1, ..., αn ∈ K such that v = α1e1 + ..+αnen,

φ1(v) = φ1(α1e1 + ... + αnen) = [φ1]B






α1

...
αn






= [φ2]B






α1

...
αn




 = φ2(α1e1 + ... + αnen) = φ2(v),

i.e., φ1 = φ2 and the mapping ψ is 1 − 1.

• For every A ∈ GLn(K), define φA : V → V by

φA(v) = A[v]B = A






α1

...
αn




 , ∀v = α1e1 + ... + αnen ∈ V.

As A is invertible matrix, it is easily seen that φA is an automorphism of
V , i.e., that φA ∈ GLK(V ) and also that

ψ(φA) = [φA]B = A,

so the mapping ψ is onto GLn(K).

• For every φ1, φ2 ∈ GLK(V ), we have

ψ(φ1 ◦ φ2) = [φ1 ◦ φ2]B = [φ1]B [φ2]B = ψ(φ1)ψ(φ2).

2.3 (e):

Recall that if S = {xα}α∈A then 〈S〉 = {x±1
α1

∙ ... ∙ x±1
αn

: n ∈ N} is a subgroup of
G and that S ⊂ 〈S〉.

• For every Hβ ≤ G such that S ⊂ Hβ , as Hβ is a group then Hβ must
contain all products of elements and inverses of elements from S, that
means 〈S〉 ⊂ Hβ and therefore

〈S〉 ⊂
⋂

S⊂Hβ≤G

Hβ .

• As 〈S〉 ≤ G and S ⊂ 〈S〉, one of the H ′
βs is equal to 〈S〉, then

⋂

S⊂Hβ≤G

Hβ ⊂ 〈S〉.
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2.4 (f):

We will show two examples as required.

• Let G = Z2 × Z2 the product of the group (Z2, +, 0) with itself, H1 =
〈(1, 0)〉 and H2 = 〈(0, 1)〉. Clearly H1, H2 ≤ G as they are the subgroups
generated by an element of G, H1 6= H2 as (1, 0) ∈ H1 but (1, 0) /∈ H2

and H1 ≈ H2 as one can easily consider the isomorphism from H1 to H2

given by
φ((1, 0)) = (0, 1), φ((0, 0)) = (0, 0),

or using a more general fact that any two groups of rder 2 are isomorphic.

• Let G = Z4 × Z2 × Z2, H1 = 〈(1, 0, 0)〉 and H2 = {0} × Z2 × Z2. Clearly
H1 ≤ G as a cyclic subgroup of G, whereas H2 ≤ G since {0} ≤ Z4 and
|H1| = |H2| = 4. Finally, H1 � H2 can be easily seen as H1 contains
an element of order 4 (for example (1, 0, 0)) and if H! ≈ H2 then also H2

contains an element of order 4, which is clearly not true.

3 Question 4.

3.1 (c):

Denote Kn = {1, ..., n}. Let σ ∈ Sn be any permutation.

• If σ(x) = x for all x ∈ Kn, then σ = (1) and it is cyclic.

• If σ 6= (1), let a1 be the smallest number satisfies σ(a1) 6= a1. Write the
list

σ(a1) = a2

σ(a2) = a3

...

σ(aj) = aj+1

...

As Kn is finite, there exists i such that σ(ai) is equal to one of the values
a1, ..., ai. Let k be the smallest number i with this property. So we know
that σ(ak) = aj for some 1 ≤ j ≤ k. We will show that j = 1: otherwise,
j > 1 and then σ(ak−1) = ak, σ(aj−1) = aj imply that

σ(aj−1) = aj = σ(ak) = σ(σ(ak−1))

ad hence aj−1 = σ(ak−1), as σ is 1 − 1. But that is a contradiction to
the minimality of k, and therefore j = 1. Then σ(ak) = a1 and we got
k distinct elements a1, ..., ak such that σ(a1) = a2, ..., σ(ak) = a1, i.e.,
the set a1, ..., ak determines one cyclic σ1 = (a1, ..., ak) in the requested
product formula for σ.

• If σ(b) = b for all b ∈ Kn \ {a1, ..., ak}, then σ = (a1, ..., ak) is a cyclic.
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• Otherwise, let b1 ∈ Kn \ A1 satisfies σ(b1) 6= b1 and in a similar way
construct a cyclic σ2 of the form σ = (b1, b2, ..., bt).

• In every step we start to construct a cyclic from an element x ∈ Kn which
does not appear in any of the previous cycles that satisfies σ(x) 6= x. This
process will end after finitely any steps, as Kn is finite and in every step
we omit at least two elements from Kn. Clearly, all the cycles we get at
the end of the process, say σ1, ..., σr are all disjoint and that

σ = σ1 ∙ ... ∙ σr.

• As any two disjoint cycles are commutating and the order of a cyclic is
equal to its length, it follows that the order of σ = σ1 ∙ ... ∙ σr is equal to
the smallest common multiple of all the orders ord(σ1), ..., ord(σr), i.e.,

ord(σ) = [|σ1|, ..., |σr|].

3.2 (d):

• Sn is of order n!.

• The number of all of cycles in Sn of length k is given by
(

n
k

)

(k − 1)! :

to get all cycles of the form (a1, ..., ak) one should choose k elements out

of {1, ..., n}-there are

(
n
k

)

many such choices, however there are k ways

to describe the same cyclic

(a1, ..., ak) = (a2, ..., ak, a1) = ... = (ak, a1, ..., ak−1),

so one should also fix the first element a1 on the cycle and then you have
(k − 1)! ways to get all the possible cycles consists of a2, ..., ak.
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