Algebraic Structures- Solutions of Homework 3

written by Motke Porat

November 2017

1 Question 1.

1.1 (c):

Clearly $\left\{x . g x, g^{2} x, \ldots\right\}=\left\{x, g x, \ldots, g^{p-1} x\right\}$. Moreover,

- if $g^{j} x=x$ for some $1<j<p$, then j and p are coprime and there exist $n, m \in \mathbb{Z}$ such that $n j+m p=1$, so

$$
g x=g^{n j+m p} x=x
$$

and we get $\left|\left\{x, g x, \ldots, g^{p-1} x\right\}\right|=|\{x\}|=1$.

- if $g^{j} x \neq x$ for all $1<j<p$, then $\left|\left\{x, g x, \ldots, g^{p-1} x\right\}\right|=p$.

1.2 (d):

X is the disjoint union of all orbits of $\langle g\rangle$,

$$
X=\bigcup_{i}\left\{x_{i}, g x_{i}, g^{2} x_{i}, \ldots\right\}
$$

and from part (c) we know that each orbit $\left\{x_{i}, g x_{i}, g^{2} x_{i}, \ldots\right\}$ is of length 1 or p. If all the orbits were of length p then $p||X|=n$ which is a contradiction to the assumption that $\operatorname{gcd}(p, n)=1$, therefore there is an orbit of length 1, i.e., there exists $x_{i} \in X$ for which $g x_{i}=x_{i}$.

2 Question 2.

2.1 (b):

The rule $(h, g) \rightarrow g h^{-1}$ defines a group action:

- $(e, g) \rightarrow g e^{-1}=g$ for any $g \in G$,
- $\left(h_{1} h_{2}, g\right) \rightarrow g\left(h_{1} h_{2}\right)^{-1}=g\left(h_{2}^{-1} h_{1}^{-1}\right)=\left(h_{1}, g h_{2}^{-1}\right)=\left(h_{1},\left(h_{2}, g\right)\right)$ for every $h_{1}, h_{2} \in H$,.

The rule $(h, g) \rightarrow g h$ is not a group action, as

$$
\left(h_{1} h_{2}, g\right)=g h_{1} h_{2} \neq g h_{2} h_{1}=\left(h_{1},\left(h_{2}, g\right)\right)
$$

and it is enough to take $g=e$ and h_{1}, h_{2} which not commute.

2.2 (c):

Take the following mapping from the set of all right cosets of H to the set of all left cosets of H :

$$
\phi:\{a H: a \in G\} \rightarrow\{H a: a \in G\}, \quad \phi(a H)=H a^{-1} .
$$

Then-

- The mapping ϕ is well defined, as if $a_{1} H=a_{2} H$ then $a_{1}^{-1} a_{2} \in H$ and hence

$$
\phi\left(a_{1} H\right)=H a_{1}^{-1}=H a_{1}^{-1} a_{2} a_{2}^{-1}=H a_{2}^{-1}=\phi\left(a_{2} H\right) .
$$

- If $\phi(a H)=\phi(b H)$, then $H a^{-1}=H b^{-1}$ which means that there exist $h_{1}, h_{2} \in h$ such that $h_{1} a^{-1}=h_{2} b^{-1}$ and thus $a^{-1} b \in H$. Therefore

$$
b H=a\left(a^{-1} b\right) H=a H
$$

and ϕ is $1-1$.

- For every right coset $H b$ of H, we have

$$
\phi\left(b^{-1} H\right)=H\left(b^{-1}\right)^{-1}=H b
$$

so ϕ is onto the set of all right cosets of H.
Notice that the mapping $\phi: a H \rightarrow H a$ is not a good one for us, as it is not well defined: let $G=S_{3}$ and $H=\{(1),(12)\}$, then it is easy to check that

$$
(1,3) H=\{(1,3),(1,3,2)\}=(1,3,2) H
$$

but
$\phi((1,3) H)=H(1,3)=\{(1,3),(1,2,3)\} \neq\{(1,3,2),(2,3)\}=H(1,3,2)=\phi((1,3,2) H)$.

3 Question 3.

3.1 (a): No, here is a counterexample:

Let $G=A_{4}, n=\left|A_{4}\right|=4!/ 2=12$ and there is no a subgroup of A_{4} of order 6 : the group A_{4} consists of 12 permutations:

- the identity (1),
- 3 products of 2 cycles of length 2 :

$$
(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)
$$

- 8 cycles of length 3 , separated into 4 pairs:

$$
(1,2,4),(1,4,2), \quad(1,3,4),(1,4,3), \quad(1,2,3),(1,3,2), \quad(2,3,4),(2,4,3)
$$

If H is a subgroup of A of length at least 6 , then:

- H contains at least 2 cycles of length 3 ,
- if H contains 2 cycles of length 3 from 2 different pairs, then H has to be equal to A_{4}. For example, if $(1,2,3),(1,4,2) \in H$ then their inverses $(1,3,2),(1,2,4)$ belong to H and all the products

$$
\begin{array}{r}
(1,2,3)(1,4,2)=(2,3,4), \\
(1,4,2)(1,2,3)=(1,4,3), \\
(1,3,2)(1,4,2)=(1,3)(2,4)
\end{array}
$$

belong to H and then $H=A_{4}$.

- if H contains a cycle of length 3 and a product of two cycles of length 2 , then it contains 2 cycles of length 3 that correspond to 2 different pairs, and hence $H=A_{4}$. For example, if $(1,2,3) \in H$ and $(1,3)(2,4) \in H$, then also $(1,2,3)(1,3)(2,4)=(1,4,2) \in H$.

Therefore, if h is a subgroup with at least 6 elements, then it must be equal to A_{4}, so A_{4} does not have any subgroups of order 6 .

$3.2 \quad(\mathrm{c}):$

In question 1 of homework 2 you showed that $\left(\mathbb{Z}_{n}^{\times}, \cdot, \overline{1}\right)$ is a group of order $\varphi(n)$, where \mathbb{Z}_{n}^{\times}is the subset of \mathbb{Z}_{n} consists of all the invertible elements. If

$$
\operatorname{gcd}(a, n)=1
$$

then a is an invertible element in \mathbb{Z}_{n} and therefore $a \in \mathbb{Z}_{n}^{\times}$. A corollary of the Lagrange theorem tells us that $x^{|G|}=1$ for every $x \in G$. In our case, we get that $\left|\mathbb{Z}_{n}^{\times}\right|=\varphi(n)$ and hence

$$
a^{\varphi(n)}=\overline{1} \Longrightarrow a^{\varphi(n)}=1(\quad \bmod n) .
$$

4 Question 4.

4.1 (b): No, here is a counterexample:

Let $G=A_{4}, H=\{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ and $N=\{(1),(1,2)(3,4)\}$. It is easy to check that H is a subgroup of G, while $H \triangleleft G$ can be verified by the simple property that

$$
\sigma^{-1}(i, j)(k, t) \sigma=(\sigma(i), \sigma(j))(\sigma(k), \sigma(t)) \in H
$$

for every $\sigma \in A_{4}$. The fact that $N \triangleleft H$ follows as the index of H in G is equal to $|H| /|N|=2$.

4.2 (c):

Let $H<G$ and $N:=\cap_{g \in G} g^{-1} H g$. Clearly N is a subgroup of G as the intersection of the subgroups $g^{-1} \mathrm{Hg}$ for all $g \in G$. Moreover, for every $a, g \in G$ and $n \in N$, by the definition of N we know that

$$
n \in\left(g a^{-1}\right)^{-1} H\left(g a^{-1}\right)=a g^{-1} H g a^{-1} \Longrightarrow a^{-1} n a \in g^{-1} H g
$$

and thus $a^{-1} n a \in \cap_{g \in G} g^{-1} H g=N$, so we have $N \triangleleft G$.

5 Question 7.

Let \mathbb{F} be a field with q elements.

- How many invertible $n \times n$ matrices over \mathbb{F} are there? In order to construct an invertible $n \times n$ matrix over \mathbb{F}, we have to choose the first column of the matrix to be any vector in \mathbb{F}^{n} but zero, so we have $q^{n}-1$ options; for choosing the second column we can choose any column in \mathbb{F}^{n} except for products by scalar of the first column, so we have $q^{n}-q$ options;... In general, for choosing the k column we can choose any column in \mathbb{F}^{n} except for any vector in the span of the first $k-1$ columns, so there are $q^{n}-q^{k}$ options. Therefore, we have exactly

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{n-1}\right)=\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)
$$

invertible $n \times n$ matrices over \mathbb{F}, i.e., $\left|G L_{n}(\mathbb{F})\right|=\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)$.

- The group $S L_{n}(\mathbb{F})$ can be described also as the kernel of the determinant mapping $\operatorname{det}(\cdot): G L_{n}(\mathbb{F}) \rightarrow \mathbb{F}^{\times}$and as this mapping is onto \mathbb{F}^{\times}, we have

$$
\left|S L_{n}(\mathbb{F})\right|=\frac{\left|G L_{n}(\mathbb{F})\right|}{\left|\mathbb{F}^{\times}\right|}=\frac{\prod_{k=0}^{n-1}\left(q^{n}-q^{k}\right)}{q-1}=q^{n-1}\left(q^{n}-1\right) \prod_{k=1}^{n-2}\left(q^{n}-q^{k}\right)
$$

