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1 Question 1.

1.1 (c):

Clearly {x.gx, g2x, ...} = {x, gx, ..., gp−1x}. Moreover,

• if gjx = x for some 1 < j < p, then j and p are coprime and there exist
n,m ∈ Z such that nj + mp = 1, so

gx = gnj+mpx = x

and we get |{x, gx, ..., gp−1x}| = |{x}| = 1.

• if gjx 6= x for all 1 < j < p, then |{x, gx, ..., gp−1x}| = p.

1.2 (d):

X is the disjoint union of all orbits of 〈g〉,

X =
⋃

i

{xi, gxi, g
2xi, ...}

and from part (c) we know that each orbit {xi, gxi, g
2xi, ...} is of length 1 or p.

If all the orbits were of length p then p | |X| = n which is a contradiction to the
assumption that gcd(p, n) = 1, therefore there is an orbit of length 1, i.e., there
exists xi ∈ X for which gxi = xi.

2 Question 2.

2.1 (b):

The rule (h, g) → gh−1 defines a group action:

• (e, g) → ge−1 = g for any g ∈ G,

• (h1h2, g) → g(h1h2)−1 = g(h−1
2 h−1

1 ) = (h1, gh−1
2 ) = (h1, (h2, g)) for every

h1, h2 ∈ H,.

The rule (h, g) → gh is not a group action, as

(h1h2, g) = gh1h2 6= gh2h1 = (h1, (h2, g))

and it is enough to take g = e and h1, h2 which not commute.
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2.2 (c):

Take the following mapping from the set of all right cosets of H to the set of all
left cosets of H:

φ : {aH : a ∈ G} → {Ha : a ∈ G}, φ(aH) = Ha−1.

Then-

• The mapping φ is well defined, as if a1H = a2H then a−1
1 a2 ∈ H and

hence
φ(a1H) = Ha−1

1 = Ha−1
1 a2a

−1
2 = Ha−1

2 = φ(a2H).

• If φ(aH) = φ(bH), then Ha−1 = Hb−1 which means that there exist
h1, h2 ∈ h such that h1a

−1 = h2b
−1 and thus a−1b ∈ H. Therefore

bH = a(a−1b)H = aH

and φ is 1 − 1.

• For every right coset Hb of H, we have

φ(b−1H) = H(b−1)−1 = Hb

so φ is onto the set of all right cosets of H.

Notice that the mapping φ : aH → Ha is not a good one for us, as it is not well
defined: let G = S3 and H = {(1), (12)}, then it is easy to check that

(1, 3)H = {(1, 3), (1, 3, 2)} = (1, 3, 2)H

but

φ((1, 3)H) = H(1, 3) = {(1, 3), (1, 2, 3)} 6= {(1, 3, 2), (2, 3)} = H(1, 3, 2) = φ((1, 3, 2)H).

3 Question 3.

3.1 (a): No, here is a counterexample:

Let G = A4, n = |A4| = 4!/2 = 12 and there is no a subgroup of A4 of order 6:
the group A4 consists of 12 permutations:

• the identity (1),

• 3 products of 2 cycles of length 2:

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)

• 8 cycles of length 3, separated into 4 pairs:

(1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (1, 2, 3), (1, 3, 2), (2, 3, 4), (2, 4, 3).

If H is a subgroup of A of length at least 6, then:

• H contains at least 2 cycles of length 3,
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• if H contains 2 cycles of length 3 from 2 different pairs, then H has to
be equal to A4. For example, if (1, 2, 3), (1, 4, 2) ∈ H then their inverses
(1, 3, 2), (1, 2, 4) belong to H and all the products

(1, 2, 3)(1, 4, 2) = (2, 3, 4),

(1, 4, 2)(1, 2, 3) = (1, 4, 3),

(1, 3, 2)(1, 4, 2) = (1, 3)(2, 4)

belong to H and then H = A4.

• if H contains a cycle of length 3 and a product of two cycles of length 2,
then it contains 2 cycles of length 3 that correspond to 2 different pairs,
and hence H = A4. For example, if (1, 2, 3) ∈ H and (1, 3)(2, 4) ∈ H,
then also (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) ∈ H.

Therefore, if h is a subgroup with at least 6 elements, then it must be equal to
A4, so A4 does not have any subgroups of order 6.

3.2 (c):

In question 1 of homework 2 you showed that (Z×
n , ∙, 1) is a group of order ϕ(n),

where Z×
n is the subset of Zn consists of all the invertible elements. If

gcd(a, n) = 1

then a is an invertible element in Zn and therefore a ∈ Z×
n . A corollary of the

Lagrange theorem tells us that x|G| = 1 for every x ∈ G. In our case, we get
that |Z×

n | = ϕ(n) and hence

aϕ(n) = 1 =⇒ aϕ(n) = 1( mod n).

4 Question 4.

4.1 (b): No, here is a counterexample:

Let G = A4, H = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} and N = {(1), (1, 2)(3, 4)}.
It is easy to check that H is a subgroup of G, while H � G can be verified by
the simple property that

σ−1(i, j)(k, t)σ = (σ(i), σ(j))(σ(k), σ(t)) ∈ H

for every σ ∈ A4. The fact that N � H follows as the index of H in G is equal
to |H|/|N | = 2.

4.2 (c):

Let H < G and N := ∩g∈Gg−1Hg. Clearly N is a subgroup of G as the
intersection of the subgroups g−1Hg for all g ∈ G. Moreover, for every a, g ∈ G
and n ∈ N , by the definition of N we know that

n ∈ (ga−1)−1H(ga−1) = ag−1Hga−1 =⇒ a−1na ∈ g−1Hg

and thus a−1na ∈ ∩g∈Gg−1Hg = N , so we have N � G.
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5 Question 7.

Let F be a field with q elements.

• How many invertible n×n matrices over F are there? In order to construct
an invertible n × n matrix over F, we have to choose the first column of
the matrix to be any vector in Fn but zero, so we have qn − 1 options;
for choosing the second column we can choose any column in Fn except
for products by scalar of the first column, so we have qn − q options;... In
general, for choosing the k column we can choose any column in Fn except
for any vector in the span of the first k − 1 columns, so there are qn − qk

options. Therefore, we have exactly

(qn − 1)(qn − q)...(qn − qn−1) =
n−1∏

k=0

(qn − qk)

invertible n × n matrices over F, i.e., |GLn(F)| =
∏n−1

k=0(qn − qk).

• The group SLn(F) can be described also as the kernel of the determinant
mapping det(∙) : GLn(F) → F× and as this mapping is onto F×, we have

|SLn(F)| =
|GLn(F)|

|F×|
=

∏n−1
k=0(qn − qk)

q − 1
= qn−1(qn − 1)

n−2∏

k=1

(qn − qk).
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