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1 Question 1.

1.1 (c):
Clearly {x.gz, g%z, ...} = {x, g, ..., g?"'z}. Moreover,

o if g¢Jx = x for some 1 < j < p, then j and p are coprime and there exist
n,m € Z such that nj + mp = 1, so
gr = gV TP = ¢
and we get |{z, gz, ...,gP o} = [{x}| = 1.

o if ¢z # x for all 1 < j < p, then |{z,gx,...,g? L2} = p.

1.2 (d):

X is the disjoint union of all orbits of {g),

X - U{mivg$i7g2xi7 }
)

and from part (c) we know that each orbit {z;, gx;, g>x;, ...} is of length 1 or p.
If all the orbits were of length p then p | | X| = n which is a contradiction to the
assumption that ged(p,n) = 1, therefore there is an orbit of length 1, i.e., there
exists x; € X for which gz; = ;.

2 Question 2.

2.1 (b):
The rule (h,g) — gh~! defines a group action:

o (e,9) > ge !t =gforany g €@,
o (hiha,g) — g(haha)™" = g(hy'hi') = (h1,ghy ") = (b, (ha, g)) for every
hl,hg €H,.

The rule (h,g) — gh is not a group action, as

(hihz, g) = ghiha # ghohi = (ha, (h2, 9))

and it is enough to take g = e and h1, hy which not commute.



2.2 (c):

Take the following mapping from the set of all right cosets of H to the set of all
left cosets of H:

¢:{aH :a € G} —{Ha:a€ G}, ¢(aH)=Ha " .
Then-

e The mapping ¢ is well defined, as if a;H = asH then aflag € H and
hence
(a1 H) = Hay' = Haj 'asay ' = Hay ' = ¢lagH).

o If p(aH) = ¢(bH), then Ha~' = Hb~! which means that there exist
hi,ho € h such that hja~! = hob~! and thus a~'b € H. Therefore

bH = a(a 'b)H = aH
and ¢ is 1 — 1.
e For every right coset Hb of H, we have
p(b " H)=H((Ob )" = Hb
so ¢ is onto the set of all right cosets of H.

Notice that the mapping ¢ : aH — Ha is not a good one for us, as it is not well
defined: let G = S3 and H = {(1), (12)}, then it is easy to check that

(1,3)H ={(1,3),(1,3,2)} = (1,3,2)H
but

¢((1’3)H) = H(173) = {(I’S)a (17273)} # {(1’352)7 (2’3)} = H(1’372) = ¢((173’2)H)

3 Question 3.

3.1 (a): No, here is a counterexample:

Let G = Agq,n = |A4| = 41/2 = 12 and there is no a subgroup of A4 of order 6:
the group A, consists of 12 permutations:

e the identity (1),
e 3 products of 2 cycles of length 2:
(1,2)(3,4),(1,3)(2,4), (1,4)(2,3)
e 8 cycles of length 3, separated into 4 pairs:
(1,2,4),(1,4,2), (1,3,4),(1,4,3), (1,2,3),(1,3,2), (2,3,4),(2,4,3).

If H is a subgroup of A of length at least 6, then:

e H contains at least 2 cycles of length 3,



e if H contains 2 cycles of length 3 from 2 different pairs, then H has to
be equal to A4. For example, if (1,2,3),(1,4,2) € H then their inverses
(1,3,2),(1,2,4) belong to H and all the products

(1,2,3)(1,4,2) = (2,3,4),
(1,4,2)(1,2,3) = (1,4,3),
(1,3,2)(1,4,2) = (1,3)(2,4)
belong to H and then H = A4.

e if H contains a cycle of length 3 and a product of two cycles of length 2,
then it contains 2 cycles of length 3 that correspond to 2 different pairs,
and hence H = A4. For example, if (1,2,3) € H and (1,3)(2,4) € H,
then also (1,2,3)(1,3)(2,4) = (1,4,2) € H.

Therefore, if h is a subgroup with at least 6 elements, then it must be equal to
Ay, so Ay does not have any subgroups of order 6.

3.2 (c):

In question 1 of homework 2 you showed that (Z),-, 1) is a group of order ¢(n),
where Z) is the subset of Z,, consists of all the invertible elements. If

ged(a,n) =1

then a is an invertible element in Z,, and therefore a € Z. A corollary of the
Lagrange theorem tells us that z!Gl = 1 for every # € G. In our case, we get
that |Z*| = ¢(n) and hence

a?M =T = (") = 1( mod n).

4 Question 4.

4.1 (b): No, here is a counterexample:

Let G = Ay, H = {(1),(1,2)(3,4), (1,3)(2,4),(1,4)(2,3)} and N = {(1),(1,2)(3,4)}.
It is easy to check that H is a subgroup of G, while H <t G can be verified by
the simple property that

o= (i, §)(k, )o = (0(i),0(7))(o(k),0(t)) € H

for every o € A4. The fact that N <1 H follows as the index of H in G is equal
to |H|/|N| = 2.

4.2 (c):

Let H < G and N := Ngegg 'Hg. Clearly N is a subgroup of G as the
intersection of the subgroups g ' Hg for all g € G. Moreover, for every a,g € G
and n € N, by the definition of N we know that

1

ne€(ga ) 'H(ga ') =ag ' Hga ' = a"'na € g"'Hyg

and thus a~'na € ﬁgegg’ng = N, so we have N < @G.



5 Question 7.

Let F be a field with ¢ elements.

e How many invertible n x n matrices over F are there? In order to construct
an invertible n x n matrix over F, we have to choose the first column of
the matrix to be any vector in F™ but zero, so we have ¢" — 1 options;
for choosing the second column we can choose any column in F" except
for products by scalar of the first column, so we have ¢" — ¢ options;... In
general, for choosing the k£ column we can choose any column in F” except
for any vector in the span of the first k£ — 1 columns, so there are ¢™ — ¢*
options. Therefore, we have exactly

n—1
(@ =" =) (" —q" ) =] @ — "
k=0
invertible n x n matrices over F, i.e., |GL,(F)| = Z;é (q" — q¥).

e The group SL,(F) can be described also as the kernel of the determinant
mapping det(+) : GL,(F) — F* and as this mapping is onto F*, we have

GL,(F P olq" —¢F el m =
s2a(F)] = et - Mm@ 200 v T - o)
k=1



