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1 Question 1.

1.1 (a):

(i) G1 × {e} � G1 × G2: For every g1, h1 ∈ G1, g2 ∈ G2,

(g1, g2)(h1, e)(g1, g2)
−1 = (g1h1g

−1
1 , e) ∈ G1 × {e}.

The isomorphism is given by-

φ : G1 × G2/G1 × {e} → G2, φ((g1, g2)(G1 × {e})) = g2.

(ii) Z� R: For every r ∈ R, n ∈ Z, r + n + (−r) = n ∈ Z. The isomorphism is
given by-

φ : R/Z→ S1, φ(r + Z) = r − [r],

where [r] is the greatest integer that is smaller than r.

(iii) Z2 � R2 : For every (r1, r2) ∈ R2 and (n1, n2) ∈ Z2,

(r1, r2) + (n1, n2) + (−r1,−r2) = (n1, n2) ∈ Z
2.

The isomorphism given by-

φ : R2/Z2 → S1 × S1, φ((r1, r2)Z
2) = (r1 − [r1], r2 − [r2]).

(iv) SLn(K) � GLn(K) : For every A ∈ GLn(K) and B ∈ SLn(K),

det(A−1BA) = det(A−1) det(B) det(A) = det(B) = 1

so A−1BA ∈ SLn(K). The isomorphism is given by-

φ : GLn(K)/SLn(K) → K×, φ(A ∙ SLn(K)) = det(A).

(v) SOn(K) � On(K) : For every A ∈ On(K) and B ∈ SOn(K),

det(A−1BA) = det(B) = 1 ⇒ A−1BA ∈ SOn(K).

The isomorphism is given by-

φ : On(R)/SOn(R) → Z/2Z, φ(A ∙ SOn(R)) = det(A).
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(vi) Z/nZ� D2n : The group D2n is generated by two elements r, s, where r
is a rotation of order n, s is a reflection of order 2 and r−1 = srs. Then
〈r〉 ≤ D2n is a subgroup of order n and hence of index 2, therefore 〈r〉�D2n

and 〈r〉 ≈ Z/nZ. The isomorphism is given by

φ : D2n/〈r〉 → Z/2Z, φ(x ∙ 〈r〉) = k − 1( mod 2)

where x = rn1srn2s ∙ ... ∙ srnk ∈ D2n, as x ∙ 〈r〉 = sk−1 ∙ 〈r〉.

(vii) N = {(1), (12)(34), (13)(24), (14)(23)} � S4 : For every σ ∈ S4 we know
that σ−1(ij)(kl)σ = (σ(i), σ(j))(σ(k), σ(l)) ∈ N . The isomorphism is
given by

φ : S4/N = {N, (12) ∙ N, (13) ∙ N, (14) ∙ N, (123) ∙ N, (132) ∙ N} → S3,

φ(N) = (1), φ((12) ∙ N) = (12), φ((13) ∙ N) = (13), φ((14) ∙ N) = (23) ∙ N,

φ((123) ∙ N) = (123), φ((132) ∙ N) = (132).

1.2 (b):

• If H is a subgroup of G with |G| : |H| = 2, then the index of H in G is
equal to 2, which means that there are exactly 2 right co-sets of H and
2 left co-sets, i.e., there exists a ∈ G such that a /∈ H and H ∪ aH = G.
It follows that Ha 6= H and therefore the 2 right co-sets of H must be H
and Ha, so

G = H ∪ aH = H ∪ Ha.

Therefore, Ha = G \H and Ha = G \ aH , so aH = Ha. As H has only 2
right/left co-sets, we basically showed that H is a normal subgroup of G.

• Moreover, it is easily seen that

G/H = {H, aH}

is a group of order 2 and hence isomorphic to the group Z/2Z.

1.3 (c):

The answer is yes! We know that R2 \ {(0, 0) ≈ C× and SO2(R) ≈ S1 = {z ∈
C : |z| = 1}, therefore the action of SO2(R) on R2 \ {(0, 0)} is the same as the
action of S1 on C× and we have C×/S1 ≈ R>0.

2 Question 2.

2.1 (a):

• S3 is not simple, as H = 〈(123)〉, which is the subgroup of S2 generated
by a cycle of length 3, is of order 3 and hence of index 2, so H � S3.

• S4 is not simple as A4, which is the subgroup of S4 consists of all even
permutations, is a normal subgroup of S4.

• D2n is never simple, as it always contain a subgroup of index 2, that is
the subgroup of D2n generated by the rotation, and hence is a normal
subgroup of D2n.
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2.2 (b):

Let G be a group of order 62. By Cauchy’s theorem, there exists g ∈ G of order
31, let H := 〈g〉, then H is a subgroup of G of order 31 and hence the index
of H in G is equal to 2. From part (b) in question 1 we know that H � G and
hence G is not simple.

3 Question 3.

3.1 (c):

Let N � G and suppose G/N is abelian. Then, for every g1, g2 ∈ G,

(g1N)(g2N) = (g2N)(g1N) =⇒ (g1g2)N = (g2g1)N =⇒ (g−1
1 g−1

2 g1g2)N = N

which means that g−1
1 g−1

2 g1g2 = [g1, g2] ∈ N for all g1, g2 ∈ G and therefore the
group generated by all commutators is a subset of N , i.e., [G,G] ≤ N.

3.2 (d):

Let H ≤ G and suppose that [G,G] ≤ H.Then, for every g ∈ G, h ∈ H,

g−1hg = hh−1g−1hg = h[h, g] ∈ H ∙ [G,G] ⊂ H ∙ H = H,

i.e., g−1hg ∈ H and H � G.

4 Question 5.

4.1 (a):

Assume that N1, N2 � G and N1 ∩ N2 = {e}. For every g1 ∈ G1 and g2 ∈ G2,
we have

g−1
2 g−1

1 g2g1 = g−1
2 (g−1

1 g2g1) ∈ G2 ∙ (g
−1
1 G2g1) = G2 ∙ G2 = G2

and similarly

g−1
2 g−1

1 g2g1 = (g−1
2 g−1

1 g2)g1 ∈ (g−1
2 G1g2) ∙ G1 = G1 ∙ G1 = G1,

then

g−1
2 g−1

1 g2g1 ∈ G1 ∩ G2 = {e} ⇒ g−1
2 g−1

1 g2g1 = e ⇒ g1g2 = g2g1.

5 Question 7.

For every x, g ∈ G and S ⊆ G, recall the notations xg := g−1xg and Sg :=
{xg|x ∈ S} = g−1Sg.

3



5.1 (a): NG(S) := {g ∈ G|Sg = S} is a subgroup of G.

• xe = x for every x ∈ G, so Se = S and hence e ∈ NG(S).

• If g, h ∈ NG(S), then Sg = g−1Sg = S implies Sg−1
= gSg−1 = S and so

Sg−1h = {xg−1h|x ∈ S} = {(g−1h)−1x(g−1h)|x ∈ S} = {h−1(gxg−1)h|x ∈ S} = h−1(gSg−1)h

= h−1Sg−1

h = h−1Sh = Sh = S

which implies that g−1h ∈ NG(S) and hence that NG(S) ≤ G.

• For every g ∈ NG(S) and h = x1 ∙ ... ∙ xm ∈ 〈S〉, where xi or x−1
i in S, we

have

g−1hg = (g−1x1g) ∙ ... ∙ (g−1xmg)

and that is a product of elements from g−1Sg = S and inverses of such,
therefore g−1hg ∈ 〈S〉. Therefore 〈S〉 � NG(S).

• Let H be a subgroup of G with the property that 〈S〉�H. For every h ∈ H,
we have h−1〈S〉h = 〈S〉 and it is easily seen that h−1〈S〉h = 〈h−1Sh〉, so
〈S〉 = 〈h−1Sh〉 and hence S = h−1Sh. That means that h ∈ NG(S) and
hence H ⊆ NG(S) and NG(S) is the greatest subgroup of G for which 〈S〉
is a normal subgroup of it.

5.2 (b): CS(G) := {g ∈ G|∀s ∈ S, sg = s} is a subgroup of G.

• se = s fr all s ∈ S and hence e ∈ CG(S).

• If g, h ∈ CG(S), then s = gsg−1 and

sg−1h = (g−1h)−1s(g−1h) = h−1(gsg−1)h = h−1sh = s

which implies that g−1h ∈ CG(S) and then CG(S) ≤ G.

• It is not always true that CG(g−1Sg) = g−1CG(S)g.

5.3 (c): Z(G) := {g ∈ G|∀h ∈ G, hg = gh} � G.

• eh = he = h for all h ∈ G and hence e ∈ Z(G).

• If g1, g2 ∈ Z(G), then for all h ∈ G,

h(g1g2) = (hg1)g2 = (g1h)g2 = g1(hg2) = g1(g2h) = (g1g2)h

which eans that g1g2 ∈ Z(G) and that Z(G) ≤ G.

• If x ∈ G and g ∈ Z(G), then x−1gx = g ∈ Z(G) and hence Z(G) � G.

• By its definition

CG(G) = {g ∈ G|∀h ∈ G, hg = h} = {g ∈ G|∀h ∈ G, hg = gh} = Z(G).
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5.4 (d):

Z(GLn(K)) is the subgroup of GLn(K) consists of all n × n matrices over K
which are invertible and commute with every other n×n matrix: we know that
this set of all matrices is exactly the set of all scalar matrices over K.

5.5 (e):

Suppose that G/Z(G) is cyclic, so there exists a ∈ G for which

G/Z(G) = 〈aZ(G)〉.

Therefore, for every g1, g2 ∈ G, there exist n1, n2 ∈ Z for which

g1Z(G) = an1Z(G) and g2Z(G) = an2Z(G),

which imply that g1 = an1z1, g2 = an2z2 for some z1, z2 ∈ Z(G) and that

g1g2 = an1z1a
n2z2 = an1an2z1z2 = an2an1z2z1 = an2z2a

n1z1 = g2g1,

i.e., G is abelian.
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