Algebraic Structures- Solutions of Homework 4

written by Motke Porat

November 2017

1 Question 1.

1.1 (a):

(i) $G_{1} \times\{e\} \triangleleft G_{1} \times G_{2}$: For every $g_{1}, h_{1} \in G_{1}, g_{2} \in G_{2}$,

$$
\left(g_{1}, g_{2}\right)\left(h_{1}, e\right)\left(g_{1}, g_{2}\right)^{-1}=\left(g_{1} h_{1} g_{1}^{-1}, e\right) \in G_{1} \times\{e\}
$$

The isomorphism is given by-

$$
\phi: G_{1} \times G_{2} / G_{1} \times\{e\} \rightarrow G_{2}, \quad \phi\left(\left(g_{1}, g_{2}\right)\left(G_{1} \times\{e\}\right)\right)=g_{2} .
$$

(ii) $\mathbb{Z} \triangleleft \mathbb{R}$: For every $r \in \mathbb{R}, n \in \mathbb{Z}, r+n+(-r)=n \in \mathbb{Z}$. The isomorphism is given by-

$$
\phi: \mathbb{R} / \mathbb{Z} \rightarrow \mathcal{S}^{1}, \quad \phi(r+\mathbb{Z})=r-[r],
$$

where $[r]$ is the greatest integer that is smaller than r.
(iii) $\mathbb{Z}^{2} \triangleleft \mathbb{R}^{2}$: For every $\left(r_{1}, r_{2}\right) \in \mathbb{R}^{2}$ and $\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$,

$$
\left(r_{1}, r_{2}\right)+\left(n_{1}, n_{2}\right)+\left(-r_{1},-r_{2}\right)=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2} .
$$

The isomorphism given by-

$$
\phi: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathcal{S}^{1} \times \mathcal{S}^{1}, \quad \phi\left(\left(r_{1}, r_{2}\right) \mathbb{Z}^{2}\right)=\left(r_{1}-\left[r_{1}\right], r_{2}-\left[r_{2}\right]\right)
$$

(iv) $S L_{n}(\mathbb{K}) \triangleleft G L_{n}(\mathbb{K})$: For every $A \in G L_{n}(\mathbb{K})$ and $B \in S L_{n}(\mathbb{K})$,

$$
\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B)=1
$$

so $A^{-1} B A \in S L_{n}(\mathbb{K})$. The isomorphism is given by-

$$
\phi: G L_{n}(\mathbb{K}) / S L_{n}(\mathbb{K}) \rightarrow \mathbb{K}^{\times}, \quad \phi\left(A \cdot S L_{n}(\mathbb{K})\right)=\operatorname{det}(A) .
$$

(v) $S O_{n}(\mathbb{K}) \triangleleft O_{n}(\mathbb{K})$: For every $A \in O_{n}(\mathbb{K})$ and $B \in S O_{n}(\mathbb{K})$,

$$
\operatorname{det}\left(A^{-1} B A\right)=\operatorname{det}(B)=1 \Rightarrow A^{-1} B A \in S O_{n}(\mathbb{K}) .
$$

The isomorphism is given by-

$$
\phi: O_{n}(\mathbb{R}) / S O_{n}(\mathbb{R}) \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \quad \phi\left(A \cdot S O_{n}(\mathbb{R})\right)=\operatorname{det}(A)
$$

(vi) $\mathbb{Z} / n \mathbb{Z} \triangleleft D_{2 n}$: The group $D_{2 n}$ is generated by two elements r, s, where r is a rotation of order n, s is a reflection of order 2 and $r^{-1}=s r s$. Then $\langle r\rangle \leq D_{2 n}$ is a subgroup of order n and hence of index 2 , therefore $\langle r\rangle \triangleleft D_{2 n}$ and $\langle r\rangle \approx \mathbb{Z} / n \mathbb{Z}$. The isomorphism is given by

$$
\phi: D_{2 n} /\langle r\rangle \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \quad \phi(x \cdot\langle r\rangle)=k-1(\quad \bmod 2)
$$

where $x=r^{n_{1}} s r^{n_{2}} s \cdot \ldots \cdot s r^{n_{k}} \in D_{2 n}$, as $x \cdot\langle r\rangle=s^{k-1} \cdot\langle r\rangle$.
(vii) $N=\{(1),(12)(34),(13)(24),(14)(23)\} \triangleleft S_{4}$: For every $\sigma \in S_{4}$ we know that $\sigma^{-1}(i j)(k l) \sigma=(\sigma(i), \sigma(j))(\sigma(k), \sigma(l)) \in N$. The isomorphism is given by

$$
\begin{array}{r}
\phi: S_{4} / N=\{N,(12) \cdot N,(13) \cdot N,(14) \cdot N,(123) \cdot N,(132) \cdot N\} \rightarrow S_{3}, \\
\phi(N)=(1), \phi((12) \cdot N)=(12), \phi((13) \cdot N)=(13), \phi((14) \cdot N)=(23) \cdot N, \\
\phi((123) \cdot N)=(123), \phi((132) \cdot N)=(132) .
\end{array}
$$

1.2 (b):

- If H is a subgroup of G with $|G|:|H|=2$, then the index of H in G is equal to 2 , which means that there are exactly 2 right co-sets of H and 2 left co-sets, i.e., there exists $a \in G$ such that $a \notin H$ and $H \cup a H=G$. It follows that $H a \neq H$ and therefore the 2 right co-sets of H must be H and $H a$, so

$$
G=H \cup a H=H \cup H a .
$$

Therefore, $H a=G \backslash H$ and $H a=G \backslash a H$, so $a H=H a$. As H has only 2 right/left co-sets, we basically showed that H is a normal subgroup of G.

- Moreover, it is easily seen that

$$
G / H=\{H, a H\}
$$

is a group of order 2 and hence isomorphic to the group $\mathbb{Z} / 2 \mathbb{Z}$.

1.3 (c):

The answer is yes! We know that $\mathbb{R}^{2} \backslash\left\{(0,0) \approx \mathbb{C}^{\times}\right.$and $S O_{2}(\mathbb{R}) \approx \mathcal{S}^{1}=\{z \in$ $\mathbb{C}:|z|=1\}$, therefore the action of $S O_{2}(\mathbb{R})$ on $\mathbb{R}^{2} \backslash\{(0,0)\}$ is the same as the action of \mathcal{S}^{1} on \mathbb{C}^{\times}and we have $\mathbb{C}^{\times} / \mathcal{S}^{1} \approx \mathbb{R}_{>0}$.

2 Question 2.

2.1 (a):

- S_{3} is not simple, as $H=\langle(123)\rangle$, which is the subgroup of S_{2} generated by a cycle of length 3 , is of order 3 and hence of index 2 , so $H \triangleleft S_{3}$.
- S_{4} is not simple as A_{4}, which is the subgroup of S_{4} consists of all even permutations, is a normal subgroup of S_{4}.
- $D_{2 n}$ is never simple, as it always contain a subgroup of index 2 , that is the subgroup of $D_{2 n}$ generated by the rotation, and hence is a normal subgroup of $D_{2 n}$.

2.2 (b):

Let G be a group of order 62 . By Cauchy's theorem, there exists $g \in G$ of order 31, let $H:=\langle g\rangle$, then H is a subgroup of G of order 31 and hence the index of H in G is equal to 2. From part (b) in question 1 we know that $H \triangleleft G$ and hence G is not simple.

3 Question 3.

3.1 (c):

Let $N \triangleleft G$ and suppose G / N is abelian. Then, for every $g_{1}, g_{2} \in G$,

$$
\left(g_{1} N\right)\left(g_{2} N\right)=\left(g_{2} N\right)\left(g_{1} N\right) \Longrightarrow\left(g_{1} g_{2}\right) N=\left(g_{2} g_{1}\right) N \Longrightarrow\left(g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}\right) N=N
$$

which means that $g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}=\left[g_{1}, g_{2}\right] \in N$ for all $g_{1}, g_{2} \in G$ and therefore the group generated by all commutators is a subset of N, i.e., $[G, G] \leq N$.

3.2 (d):

Let $H \leq G$ and suppose that $[G, G] \leq H$.Then, for every $g \in G, h \in H$,

$$
g^{-1} h g=h h^{-1} g^{-1} h g=h[h, g] \in H \cdot[G, G] \subset H \cdot H=H,
$$

i.e., $g^{-1} h g \in H$ and $H \triangleleft G$.

4 Question 5.

4.1 (a):

Assume that $N_{1}, N_{2} \triangleleft G$ and $N_{1} \cap N_{2}=\{e\}$. For every $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$, we have

$$
g_{2}^{-1} g_{1}^{-1} g_{2} g_{1}=g_{2}^{-1}\left(g_{1}^{-1} g_{2} g_{1}\right) \in G_{2} \cdot\left(g_{1}^{-1} G_{2} g_{1}\right)=G_{2} \cdot G_{2}=G_{2}
$$

and similarly

$$
g_{2}^{-1} g_{1}^{-1} g_{2} g_{1}=\left(g_{2}^{-1} g_{1}^{-1} g_{2}\right) g_{1} \in\left(g_{2}^{-1} G_{1} g_{2}\right) \cdot G_{1}=G_{1} \cdot G_{1}=G_{1},
$$

then

$$
g_{2}^{-1} g_{1}^{-1} g_{2} g_{1} \in G_{1} \cap G_{2}=\{e\} \Rightarrow g_{2}^{-1} g_{1}^{-1} g_{2} g_{1}=e \Rightarrow g_{1} g_{2}=g_{2} g_{1} .
$$

5 Question 7.

For every $x, g \in G$ and $S \subseteq G$, recall the notations $x^{g}:=g^{-1} x g$ and $S^{g}:=$ $\left\{x^{g} \mid x \in S\right\}=g^{-1} S g$.

5.1 (a): $N_{G}(S):=\left\{g \in G \mid S^{g}=S\right\}$ is a subgroup of G.

- $x^{e}=x$ for every $x \in G$, so $S^{e}=S$ and hence $e \in N_{G}(S)$.
- If $g, h \in N_{G}(S)$, then $S^{g}=g^{-1} S g=S$ implies $S^{g^{-1}}=g S g^{-1}=S$ and so

$$
\begin{aligned}
S^{g^{-1} h} & =\left\{x^{g^{-1} h} \mid x \in S\right\}=\left\{\left(g^{-1} h\right)^{-1} x\left(g^{-1} h\right) \mid x \in S\right\}=\left\{h^{-1}\left(g x g^{-1}\right) h \mid x \in S\right\}=h^{-1}\left(g S g^{-1}\right) h \\
& =h^{-1} S^{g^{-1}} h=h^{-1} S h=S^{h}=S
\end{aligned}
$$

which implies that $g^{-1} h \in N_{G}(S)$ and hence that $N_{G}(S) \leq G$.

- For every $g \in N_{G}(S)$ and $h=x_{1} \cdot \ldots \cdot x_{m} \in\langle S\rangle$, where x_{i} or x_{i}^{-1} in S, we have

$$
g^{-1} h g=\left(g^{-1} x_{1} g\right) \cdot \ldots \cdot\left(g^{-1} x_{m} g\right)
$$

and that is a product of elements from $g^{-1} S g=S$ and inverses of such, therefore $g^{-1} h g \in\langle S\rangle$. Therefore $\langle S\rangle \triangleleft N_{G}(S)$.

- Let H be a subgroup of G with the property that $\langle S\rangle \triangleleft H$. For every $h \in H$, we have $h^{-1}\langle S\rangle h=\langle S\rangle$ and it is easily seen that $h^{-1}\langle S\rangle h=\left\langle h^{-1} S h\right\rangle$, so $\langle S\rangle=\left\langle h^{-1} S h\right\rangle$ and hence $S=h^{-1} S h$. That means that $h \in N_{G}(S)$ and hence $H \subseteq N_{G}(S)$ and $N_{G}(S)$ is the greatest subgroup of G for which $\langle S\rangle$ is a normal subgroup of it.

5.2 (b): $C_{S}(G):=\left\{g \in G \mid \forall s \in S, s^{g}=s\right\}$ is a subgroup of G.

- $s^{e}=s$ fr all $s \in S$ and hence $e \in C_{G}(S)$.
- If $g, h \in C_{G}(S)$, then $s=g s g^{-1}$ and

$$
s^{g^{-1} h}=\left(g^{-1} h\right)^{-1} s\left(g^{-1} h\right)=h^{-1}\left(g s g^{-1}\right) h=h^{-1} s h=s
$$

which implies that $g^{-1} h \in C_{G}(S)$ and then $C_{G}(S) \leq G$.

- It is not always true that $C_{G}\left(g^{-1} S g\right)=g^{-1} C_{G}(S) g$.

5.3 (c): $Z(G):=\{g \in G \mid \forall h \in G, h g=g h\} \triangleleft G$.

- $e h=h e=h$ for all $h \in G$ and hence $e \in Z(G)$.
- If $g_{1}, g_{2} \in Z(G)$, then for all $h \in G$,

$$
h\left(g_{1} g_{2}\right)=\left(h g_{1}\right) g_{2}=\left(g_{1} h\right) g_{2}=g_{1}\left(h g_{2}\right)=g_{1}\left(g_{2} h\right)=\left(g_{1} g_{2}\right) h
$$

which eans that $g_{1} g_{2} \in Z(G)$ and that $Z(G) \leq G$.

- If $x \in G$ and $g \in Z(G)$, then $x^{-1} g x=g \in Z(G)$ and hence $Z(G) \triangleleft G$.
- By its definition

$$
C_{G}(G)=\left\{g \in G \mid \forall h \in G, h^{g}=h\right\}=\{g \in G \mid \forall h \in G, h g=g h\}=Z(G) .
$$

5.4 (d):

$Z\left(G L_{n}(\mathbb{K})\right)$ is the subgroup of $G L_{n}(\mathbb{K})$ consists of all $n \times n$ matrices over \mathbb{K} which are invertible and commute with every other $n \times n$ matrix: we know that this set of all matrices is exactly the set of all scalar matrices over \mathbb{K}.

5.5 (e):

Suppose that $G / Z(G)$ is cyclic, so there exists $a \in G$ for which

$$
G / Z(G)=\langle a Z(G)\rangle
$$

Therefore, for every $g_{1}, g_{2} \in G$, there exist $n_{1}, n_{2} \in \mathbb{Z}$ for which

$$
g_{1} Z(G)=a^{n_{1}} Z(G) \quad \text { and } \quad g_{2} Z(G)=a^{n_{2}} Z(G)
$$

which imply that $g_{1}=a^{n_{1}} z_{1}, g_{2}=a^{n_{2}} z_{2}$ for some $z_{1}, z_{2} \in Z(G)$ and that

$$
g_{1} g_{2}=a^{n_{1}} z_{1} a^{n_{2}} z_{2}=a^{n_{1}} a^{n_{2}} z_{1} z_{2}=a^{n_{2}} a^{n_{1}} z_{2} z_{1}=a^{n_{2}} z_{2} a^{n_{1}} z_{1}=g_{2} g_{1}
$$

i.e., G is abelian.

