Algebraic Structures- Solutions of Homework 5

written by Motke Porat

December 2017

1 Question 1.

1.1 (c):

Assume $\phi: G \rightarrow H$ is a group homomorphism and let $g \in G$ be such that $n:=\operatorname{ord}_{G}(g)<\infty$. Then it follows that

$$
(\phi(g))^{n}=\phi\left(g^{n}\right)=\phi\left(e_{G}\right)=e_{H}
$$

and hence we must have that $\operatorname{ord}_{H}(\phi(g)) \mid n$, i.e.,

$$
\operatorname{ord}_{H}(\phi(g)) \mid \operatorname{ord}_{G}(g) .
$$

1.2 (e):

Assume $N \triangleleft G$ and let $g \in G$ be of a finite order $n=\operatorname{ord}_{G}(g)<\infty$. Then

$$
(g N)^{n}=g^{n} N=e_{G} N=N=e_{G / N}
$$

and hence $\operatorname{ord}_{G / N}(g N) \mid n$, i.e.,

$$
\operatorname{ord}_{G / N}(g N) \mid \operatorname{ord}_{G}(g)
$$

2 Question 3.

2.1 (c):

Assume $\phi: G \rightarrow H$ is a group homomorphism and let $A, B \leq G$.

- If $g \in \phi(\langle A, B\rangle)$ then $g=\phi(x)$ where $x=x_{1} \cdot \ldots \cdot x_{m}$ and $x_{1}, \ldots, x_{m} \in A \cup B$, and hence

$$
g=\phi\left(x_{1} \cdot \ldots \cdot x_{m}\right)=\phi\left(x_{1}\right) \cdot \ldots \cdot \phi\left(x_{m}\right) \in\langle\phi(A), \phi(B)\rangle
$$

as $\phi\left(x_{i}\right) \in \phi(A) \cup \phi(B)$ for all $i=1, \ldots, m$, i.e.,

$$
\phi(\langle A, B\rangle) \subseteq\langle\phi(A), \phi(B)\rangle
$$

- If $g \in\langle\phi(A), \phi(B)\rangle$ then $g=x_{1} \cdot \ldots \cdot x_{m}$ where $x_{1}, \ldots, x_{m} \in \phi(A) \cup \phi(B)$ and then $x_{i}=\phi\left(y_{i}\right)$ for $y_{1}, \ldots, y_{m} \in A \cup B$, which imply that

$$
g=\phi\left(y_{1}\right) \cdot \ldots \cdot \phi\left(y_{m}\right)=\phi\left(y_{1} \cdot \ldots \cdot y_{m}\right) \in \phi(\langle A, B\rangle)
$$

$$
\text { i.e., }\langle\phi(A), \phi(B)\rangle \subseteq \phi(\langle A, B\rangle)
$$

- It is not always true: let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, H=\mathbb{Z}_{2}$ and the subgroups

$$
A=\{(0,0),(1,0)\}, B=\{(0,0),(1,1)\}
$$

Consider $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ given by $\phi(a, b)=a$. So-

$$
\phi(A)=\{0,1\}, \phi(B)=\{0,1\} \Longrightarrow \phi(A) \cap \phi(B)=\{0,1\}
$$

but $\phi(A \cap B)=\phi(\{(0,0)\})=\{0\}$.

2.2 (d):

- Assume that $N \triangleleft \phi(G)$ and recall that

$$
\phi^{-1}(N)=\{g \in G: \phi(g) \in N\}
$$

is a subgroup of G. This is a normal subgroup of G, as if $h \in \phi^{-1}(N)$ and $g \in G$, then

$$
\phi\left(g^{-1} h g\right)=\phi\left(g^{-1}\right) \phi(h) \phi(g)=\phi(g)^{-1} \phi(h) \phi(g) \in N
$$

as $\phi(h) \in N, \phi(g) \in \phi(G)$ and $N \triangleleft \phi(G)$.

- Assume that $N \subset \phi(G)$ and $\phi^{-1}(N) \triangleleft G$. For every $n \in N$ and $x \in \phi(G)$, there exists $g \in G$ and $h \in \phi^{-1}(N)$ such that $x=\phi(g)$ and $n=\phi(h)$, so

$$
x^{-1} n x=\phi(g)^{-1} \phi(h) \phi(g)=\phi\left(g^{-1} h g\right) \in N
$$

as $g^{-1} h g \in \phi^{-1}(N)$.

- It is not always true: let G be any group which contains a non-normal subgroup K and let $\phi: G \rightarrow H$ be $\phi \equiv 1_{H}$. Clearly ϕ is an homomorphism from G to $H, \phi(K)=\phi(G)=\left\{1_{G}\right\}$ and K is not a normal subgroup of G.

3 Question 4.

3.1 (b):

- Consider the function

$$
\phi: Q \rightarrow \mathcal{S}^{1}, \quad \phi(q)=e^{2 \pi q i}=\cos (2 \pi q)+i \sin (2 \pi q)
$$

Clearly ϕ is an homomorphism, as

$$
\phi\left(q_{1}+q_{2}\right)=e^{2 \pi\left(q_{1}+q_{2}\right) i}=e^{2 \pi q_{1} i} e^{2 \pi q_{2} i}=\phi\left(q_{1}\right) \phi\left(q_{2}\right)
$$

and if $q=m / n$ where $m, n \in \mathbb{Z}$, then

$$
\phi(q)^{n}=\phi(n q)=\phi(m)=e^{2 \pi m i}=1
$$

so $\phi(Q)=\operatorname{Tor}\left(\mathcal{S}^{1}\right)$. Finally, $q \in \operatorname{ker} \phi \leftrightarrow e^{2 \pi q i}=1 \leftrightarrow q \in \mathbb{Z}$ which means that $\operatorname{ker} \phi=\mathbb{Z}$, and from the homomorphism theorem we get that

$$
Q / \mathbb{Z} \approx \operatorname{Tor}\left(\mathcal{S}^{1}\right)
$$

- We know that $\mathbb{R} / \mathbb{Z} \approx \mathcal{S}^{1}$ and $Q / \mathbb{Z} \approx \operatorname{Tor}\left(\mathcal{S}^{1}\right)$, therefore

$$
\mathcal{S}^{1} / \operatorname{Tor}\left(\mathcal{S}^{1}\right) \approx(\mathbb{R} / \mathbb{Z}) /(Q / \mathbb{Z})
$$

while from the third homomorphism theorem we know that

$$
(\mathbb{R} / \mathbb{Z}) /(Q / \mathbb{Z}) \approx \mathbb{R} / Q
$$

and therefore

$$
\mathbb{R} / Q \approx \mathcal{S}^{1} / \operatorname{Tor}\left(\mathcal{S}^{1}\right)
$$

3.2 (c): No! here is an example:

Let $G=G L_{2}(\mathbb{R})$, which is clearly not abelian, and let the matrices $A=$ $\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ in G. It is easy to check that $A^{2}=I_{2}$ and $B^{2}=I_{2}$, so $A, B \in \operatorname{Tor}(G)$. However, $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \notin \operatorname{Tor}(G)$, as $(A B)^{n}=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right) \neq I_{2}$.

4 Question 5.

4.1 (b):

$$
\begin{aligned}
\left(g_{1}, g_{2}\right) \in N_{G \times G}(\phi(G)) & \Longleftrightarrow\left(g_{1}, g_{2}\right)^{-1} \phi(G)\left(g_{1}, g_{2}\right)=\phi(G) \\
& \Longleftrightarrow \forall g \in G,\left(g_{1}, g_{2}\right)^{-1}(g, g)\left(g_{1}, g_{2}\right) \in \phi(G) \\
& \Longleftrightarrow \forall g \in G, g_{1}^{-1} g g_{1}=g_{2}^{-1} g g_{2} \\
& \Longleftrightarrow \forall g \in G, g g_{1} g_{2}^{-1}=g_{1} g_{2}^{-1} g \\
& \Longleftrightarrow g_{1} g_{2}^{-1} \in Z(G)
\end{aligned}
$$

so

$$
N_{G \times G}(\phi(G))=\left\{\left(g_{1}, g_{2}\right) \quad \mid \quad g_{1} \in Z(G) g_{2}, g_{2} \in G\right\} .
$$

Therefore,

$$
\begin{aligned}
\phi(G) \triangleleft G \times G & \Longleftrightarrow N_{G \times G}(\phi(G))=G \times G \Longleftrightarrow \forall g_{2} \in G, Z(G) g_{2}=G \\
& \Longleftrightarrow Z(G)=G \Longleftrightarrow G \text { is abelian. }
\end{aligned}
$$

5 Question 6.

5.1 (a):

Let G be a group of order $p \cdot q$, with $p<q$ primes. From Cauchy theorem, there exists $x \in G$ of order q, so let $H:=\langle x\rangle$ be the subgroup of G generated by x. This is the only subgroup of G of order q : If $K \leq G$ is of order q and $K \neq H$, then $H \cap K \leq H$ and so $H \cap K=\{e\}$ or $H \cap K=H$, while the second can not hold as $K \neq H$, and therefore $H \cap K=\{e\}$. Then we get that

$$
|H \cdot K|=|H| \cdot|K|=q^{2}>p q=|G|
$$

which is a contradiction and hence $K=H$.

As H is the only subgroup of G of order q, for every $g \in G$ we have $\left|g^{-1} H g\right|=$ $|H|=q$ so we must have $g^{-1} H g=H$ which means that $H \triangleleft G$. Finally, G / H is a group of order p so it is isomorphic to \mathbb{Z}_{p}, i.e.,

$$
\mathbb{Z}_{q} \approx H \triangleleft G, \mathbb{Z}_{p} \approx G / H
$$

5.2 (f):

Let G be a group that is not abelian and $|G|=2 p$, where $2<p$ is prime. By Cauchy theorem, there exist $a, b \in G$ of orders $2, p$, i.e., $\operatorname{ord}(a)=2, \operatorname{ord}(b)=p$. If $a b=b a$ then $(a n)^{n}=a^{n} b^{n}$ and order of $a b$ will be the smallest common multiple of 2 and p, which is equal to $2 p$ as $p>2$ is prime. Then G contains an element ($a b$) of order $2 p$ and so it must be cyclic and then abelian, which is a contradiction. So, we must have $a b \neq b a$. We found two elements a and b in G, which are not commute of orders 2 and p, that is exactly how the group $D_{2 p}$ is defined and hence $G \approx D_{2 p}$.

6 Question 8.

Let \mathbb{F}_{2} be a field with 2 elements, say $\mathbb{F}=\{0,1\}$. The group $G L_{2}\left(\mathbb{F}_{2}\right)$ acts on \mathbb{F}_{2}^{2} in a trivial way and it has 2 different orbits: $\{(0,0)\}$ and $X=\mathbb{F}_{2}^{2} \backslash\{(0,0)\}$. For every $A \in G L_{2}\left(\mathbb{F}_{2}\right), A$ acts on X just by permutations (as A is invertible), faithfully and transitively, therefore $G L_{2}\left(\mathbb{F}_{2}\right) \approx \operatorname{Sym}(X) \approx S_{3}$.

7 Question 9.

7.1 (c):

This is not true: let $G=S_{3}, H_{1}=\langle(123)\rangle$ and $H_{2}=\langle(12)\rangle$. Clearly, $G=H_{1} \cdot H_{2}$ and $|G|=6=3 \cdot 2=\left|H_{1}\right| \cdot\left|H_{2}\right|$, but $S_{3} \not \equiv H_{1} \times H_{2}$, as $\{(1)\} \times H_{2}$ is a normal subgroup of $H_{1} \times H_{2}$, while S_{3} has no normal subgroups of order 2 .

