Algebraic Structures- Solutions of Homework 6

written by Motke Porat

December 2017

1 Question 1.

1.1 (e):

- Clearly if $k=1$ then $X_{1}=\{(1)\}$ is a subgroup of S_{n}.
- If $k>1$, then (1) $\notin X_{k}$ and then X_{k} is not a subgroup of S_{n}.
- For every $\sigma \in S_{n}$ and a cycle $\left(a_{1}, \ldots, a_{k}\right) \in X_{k}$, we have

$$
\sigma^{-1}\left(a_{1}, \ldots, a_{k}\right) \sigma=\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k}\right)\right) \in X_{k}
$$

therefore

$$
\begin{aligned}
\sigma^{-1} X_{k} \sigma & =\left\{\sigma^{-1}\left(a_{1}, \ldots, a_{k}\right) \sigma: a_{1} \neq \ldots \neq a_{k} \in\{1, \ldots, n\}\right\} \\
& =\left\{\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k}\right)\right): a_{1} \neq \ldots \neq a_{k} \in\{1, \ldots, n\}\right\}=X_{k}
\end{aligned}
$$

and as a corollary it is easy to see that $\left\langle X_{k}\right\rangle \triangleleft S_{n}$, as

$$
\sigma^{-1}\left(g_{1} \cdot \ldots \cdot g_{m}\right) \sigma=\left(\sigma^{-1} g_{1} \sigma\right) \cdot \ldots \cdot\left(\sigma^{-1} g_{m} \sigma\right) \in\left\langle X_{k}\right\rangle
$$

for every $\sigma \in S_{n}$ and $g_{1}, \ldots, g_{m} \in X_{k}$ (which imply that $\sigma^{-1} g_{j} \sigma \in X_{k}$ for all $j=1, \ldots, m$).

1.2 (h):

Let $A \in G L_{2}(\mathbb{C})$, we know that A has two eigenvalues $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ (might be equal) and its Jordan form might be of the forms:

$$
\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right),\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{1}
\end{array}\right)
$$

if $\lambda_{1}=\lambda_{2}$, and

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

if $\lambda_{1} \neq \lambda_{2}$. In addition we know that for every $B \in G L_{2}(\mathbb{C})$, the Jordan form of $B^{-1} A B$ is equal to the Jordan form of A and therefore these are all the conjugacy classes.

1.3 (i):

For every $a \in G$, we have the following

$$
\begin{aligned}
x \in a^{-1} N_{G}(H) a & \Longleftrightarrow a x a^{-1} \in N_{G}(H) \Longleftrightarrow\left(a x a^{-1}\right)^{-1} H\left(a x a^{-1}\right)=H \\
& \Longleftrightarrow x^{-1}\left(a^{-1} H a\right) x=a^{-1} H a \Longleftrightarrow x \in N_{G}\left(a^{-1} H a\right),
\end{aligned}
$$

so we proved that $a^{-1} N_{G}(H) a=N_{G}\left(a^{-1} H a\right)$.

2 Question 2.

2.1 (d):

Let G be a finite group, $\phi: G \rightarrow G$ be an automorphism such that $\phi(x)=x$ if and only if $x=e$, and assume that $\phi \circ \phi=I d$. Define the mapping $\psi: G \rightarrow G$ by

$$
\psi(x)=\phi(x) x^{-1}
$$

The mapping ψ is $1-1$: For every $x_{1}, x_{2} \in G$,

$$
\psi\left(x_{1}\right)=\psi\left(x_{2}\right) \Longrightarrow \phi\left(x_{1}\right) x_{1}^{-1}=\phi\left(x_{2}\right) x_{2}^{-1} \Longrightarrow \phi\left(x_{2}^{-1} x_{1}\right)=x_{2}^{-1} x_{1}
$$

and the last part implies that $x_{2}^{-1} x_{1}=e \Longrightarrow x_{1}=x_{2}$. As G is finite and $\psi: G \rightarrow G$ is $1-1$, it follows that ψ is onto G, therefore for every $g \in G$, there exists $x \in G$ for which

$$
g=\phi(x) x^{-1} \Longrightarrow \phi(g)=\phi(\phi(x)) \cdot \phi\left(x^{-1}\right)=x \cdot \phi\left(x^{-1}\right)=g^{-1} .
$$

Then we got that $\phi(g)=g^{-1}$ is an automorphism of G, so for every $a, b \in G$:

$$
\phi(a b)=\phi(a) \phi(b) \Longrightarrow(a b)^{-1}=a^{-1} b^{-1}=(b a)^{-1} \Longrightarrow a b=b a
$$

which means that G is commutative (abelian).

2.2 (g):

- As \mathbb{Z} is generated by either 1 or -1 , if $\phi \in \operatorname{Aut}(\mathbb{Z})$ then $\phi(1)=1$ or $\phi(1)=-1$. and in any case $\phi(n)=\phi(1) n$; so-

$$
\operatorname{Aut}(\mathbb{Z})=\left\{\phi_{1}, \phi_{2}\right\} \approx \mathbb{Z}_{2}, \quad \phi_{1}(n)=n, \phi_{2}(n)=-n, \quad n \in \mathbb{Z}
$$

- The group \mathbb{Z}_{n} is generated by an element $a \in \mathbb{Z}_{n}$ if and only if $(a, n)=1$, therefore ψ must map the generator 1 to one of the $\phi(n)$-many generators of \mathbb{Z}_{n}, so

$$
\operatorname{Aut}\left(\mathbb{Z}_{n}\right)=\left\{\psi_{a}:(a, n)=1\right\}, \quad \psi_{a}(\bar{k})=\bar{a} \cdot \bar{k} .
$$

- As S_{3} is generated by the 2 permutations (12) and (123), i.e., $S_{3}=$ $\langle(12),(123)\rangle$, then $\phi \in \operatorname{Aut}\left(S_{3}\right)$ if and only if $\phi((12))$ is of order 2 in S_{3} and $\phi((123))$ is of order 3 in S_{3}. Therefore, $\phi((12))$ can be equal to $(12),(13)$ or (23), while $\phi((123))$ can be equal to (123) or (132), and these are exactly all the possibilities for building ϕ, so we have 6 elements in
$\operatorname{Aut}\left(S_{3}\right)$. To show that $\operatorname{Aut}\left(S_{3}\right) \approx S_{3}$, it is enough to show that $\operatorname{Aut}\left(S_{3}\right)$ is not commutative, since a not commutative group of order 6 must be isomorphic to S_{3}. Consider the following 2 elements in $\operatorname{Aut}\left(S_{3}\right)$ defined by

$$
\phi_{1}((12))=(12), \phi((123))=(132)
$$

and

$$
\phi_{2}((12))=(13), \phi_{2}((123))=(123)
$$

so it is easily seen that $\phi_{1}((13))=\phi_{1}((12)(123))=(12)(132)=(23)$ and

$$
\phi_{2} \phi_{1}((12))=\phi_{2}((12))=(13), \quad \phi_{1} \phi_{2}((12))=\phi_{1}((13))=(23)
$$

which implies that $\phi_{1} \phi_{2} \neq \phi_{2} \phi_{1}$ so $\operatorname{Aut}\left(S_{3}\right)$ is not commutative.

3 Question 3.

3.1 (a):

As $|G|=36=2^{2} 3^{3}$, we know from the Sylow's theorems that

$$
n_{2}, n_{3} \mid 36, n_{2}=1(\bmod 2) \text { and } n_{3}=1(\bmod 3),
$$

which imply that $n_{3}=1$ or $n_{3}=4$.

- If $n_{3}=1$, it means that there exists a unique subgroup of G of order 9 , so this subgroup is a normal subgroup and we are done.
- If $n_{3}=4$, there are 4 subgroups of G of order 9 , say

$$
\operatorname{Sylp}_{3}(G)=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}
$$

and set $N:=P_{1} \cap P_{2} \cap P_{3} \cap P_{4}$. For every $g \in G$ and $1 \leq i \leq 4$, $P_{i}^{g}:=g^{-1} P_{i} g \in \operatorname{Sylp}(G)$ and clearly $P_{i}^{g} \neq P_{j}^{g}$ for $i \neq j$, then we get that

$$
N^{g}=\bigcap_{i=1}^{4} P_{i}^{g}=\bigcap_{j=1}^{4} P_{j}=N
$$

i.e., that $N \triangleleft G$. Moreover, we must have $|N| \mid 9$ and so $|N|=1,3$ or 9 .

- If $|N|=9$, it means that $N \subseteq P_{i}$ and $|N|=\left|P_{i}\right|$ so $N=P_{i}$ for every $1 \leq i \leq 4$ and then $P_{1}=P_{2}=P_{3}=P_{4}$ and that is a contradiction.
- We will now show that $|N|>1$: Define the mapping $\phi: G \rightarrow S_{4}$ by

$$
(\phi(g))(i)=j \text { if and only if } P_{i}^{g}=P_{j} .
$$

so this ϕ is a group homomorphism as,

$$
(\phi(g h))(i)=j \Longleftrightarrow P_{i}^{g h}=P_{j} \Longleftrightarrow\left(P_{i}^{g}\right)^{h}=P_{j} \Longleftrightarrow(\phi(g) \phi(h))(i)=j
$$

For every $1 \leq i \leq 4$, we know that $4=n_{3}=\left[G: N_{G}\left(P_{i}\right)\right]$ and hence $\left|N_{G}\left(P_{i}\right)\right|=9=\left|P_{i}\right|$, which implies that $N_{G}\left(P_{i}\right)=P_{i}$. Therefore,

$$
\operatorname{ker}(\phi)=\left\{g \in G: P_{i}^{g}=P_{i} \forall 1 \leq i \leq 4\right\}=\bigcap_{i=1}^{4} N_{G}\left(P_{i}\right)=\bigcap_{i=1}^{4} P_{i}=N
$$

and the first homomorphism theorem implies that

$$
\left.G / N=G / \operatorname{ker}(\phi) \approx \operatorname{Im}(\phi) \leq S_{4} \Longrightarrow \frac{36}{|N|}|24 \Longrightarrow| N \right\rvert\,>1
$$

Therefore $|N|>1 \Longrightarrow|N|=3$ and we are done.

3.2 (f):

Define the following function $\phi: G \rightarrow \operatorname{Sym}(G / H)$ by $\phi(g):=\phi_{g}$, where

$$
\phi_{g}(a H)=(g a) H, \quad \forall a \in G
$$

This ϕ is a group homomorphism, as for every $g_{1}, g_{2}, a \in G$ we have

$$
\phi_{g_{1} g_{2}}(a H)=\left(g_{1} g_{2} a\right) H=\phi_{g_{1}}\left(\left(g_{2} a\right) H\right)=\phi_{g_{1}} \circ \phi_{g_{2}}(a H)
$$

Moreover, if $g \in \operatorname{ker}(\phi)$ then $\phi_{g}=I d$ which means that $(g a) H=a H$ for every $a \in G$, in particular for $a=e$ we get that $g H=H$ and hence $g \in H$. Therefore,

$$
N:=\operatorname{ker}(\phi) \leq H
$$

and clearly $N \triangleleft G$ as N is the kernel of a group homomorphism. It only remains to show that $N \neq\{e\}$: If $N=\{e\}$, then

$$
G \approx \phi(G) \leq \operatorname{Sym}(G / H) \Longrightarrow n=|G|| | \operatorname{Sym}(G / H) \mid=k!
$$

and this is a contradiction.

$3.3(\mathrm{~g}):$

- Let us write $|G|=p^{a} k$ where $(p, k)=1$, then we have $|P|=p^{a}$. As $P \leq H$, we know that $p^{a}| | H \mid$, so we can write $|H|=p^{b} m$ with $(p, m)=1$ and $b \leq a$. On the other hand, $H \leq G$ so $p^{b} m \mid p^{a} k$ which implies that $a \geq b$. Finally, we got

$$
|H|=p^{a} m,|P|=p^{a} \Longrightarrow P \in \operatorname{Syl}_{p}(H) .
$$

- Take $G=S_{4}, H=A_{4}$, so $|G|=24,|H|=12$. If $P \in S y l_{2}(H)$ then $|P|=2^{2}=4$ and such a subgroup can not be in $S y l_{2}(G)$, since then $|P|=2^{3}=8$.

