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1 Question 1.

1.1 (e):

• Clearly if k = 1 then X1 = {(1)} is a subgroup of Sn.

• If k > 1, then (1) /∈ Xk and then Xk is not a subgroup of Sn.

• For every σ ∈ Sn and a cycle (a1, ..., ak) ∈ Xk, we have

σ−1(a1, ..., ak)σ = (σ(a1), ..., σ(ak)) ∈ Xk,

therefore

σ−1Xkσ = {σ−1(a1, ..., ak)σ : a1 6= ... 6= ak ∈ {1, ..., n}}

= {(σ(a1), ..., σ(ak)) : a1 6= ... 6= ak ∈ {1, ..., n}} = Xk

and as a corollary it is easy to see that 〈Xk〉 � Sn, as

σ−1(g1 ∙ ... ∙ gm)σ = (σ−1g1σ) ∙ ... ∙ (σ−1gmσ) ∈ 〈Xk〉

for every σ ∈ Sn and g1, ..., gm ∈ Xk (which imply that σ−1gjσ ∈ Xk for
all j = 1, ...,m).

1.2 (h):

Let A ∈ GL2(C), we know that A has two eigenvalues λ1, λ2 ∈ C (might be
equal) and its Jordan form might be of the forms:

(
λ1 1
0 λ1

)

,

(
λ1 0
0 λ1

)

if λ1 = λ2, and
(

λ1 0
0 λ2

)

if λ1 6= λ2. In addition we know that for every B ∈ GL2(C), the Jordan form
of B−1AB is equal to the Jordan form of A and therefore these are all the
conjugacy classes.
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1.3 (i):

For every a ∈ G, we have the following

x ∈ a−1NG(H)a ⇐⇒ axa−1 ∈ NG(H) ⇐⇒ (axa−1)−1H(axa−1) = H

⇐⇒ x−1(a−1Ha)x = a−1Ha ⇐⇒ x ∈ NG(a−1Ha),

so we proved that a−1NG(H)a = NG(a−1Ha).

2 Question 2.

2.1 (d):

Let G be a finite group, φ : G → G be an automorphism such that φ(x) = x if
and only if x = e, and assume that φ ◦ φ = Id. Define the mapping ψ : G → G
by

ψ(x) = φ(x)x−1.

The mapping ψ is 1 − 1: For every x1, x2 ∈ G,

ψ(x1) = ψ(x2) =⇒ φ(x1)x
−1
1 = φ(x2)x

−1
2 =⇒ φ(x−1

2 x1) = x−1
2 x1

and the last part implies that x−1
2 x1 = e =⇒ x1 = x2. As G is finite and

ψ : G → G is 1− 1, it follows that ψ is onto G, therefore for every g ∈ G, there
exists x ∈ G for which

g = φ(x)x−1 =⇒ φ(g) = φ(φ(x)) ∙ φ(x−1) = x ∙ φ(x−1) = g−1.

Then we got that φ(g) = g−1 is an automorphism of G, so for every a, b ∈ G:

φ(ab) = φ(a)φ(b) =⇒ (ab)−1 = a−1b−1 = (ba)−1 =⇒ ab = ba

which means that G is commutative (abelian).

2.2 (g):

• As Z is generated by either 1 or −1, if φ ∈ Aut(Z) then φ(1) = 1 or
φ(1) = −1. and in any case φ(n) = φ(1)n; so-

Aut(Z) = {φ1, φ2} ≈ Z2, φ1(n) = n, φ2(n) = −n, n ∈ Z.

• The group Zn is generated by an element a ∈ Zn if and only if (a, n) = 1,
therefore ψ must map the generator 1 to one of the φ(n)-many generators
of Zn, so

Aut(Zn) = {ψa : (a, n) = 1}, ψa(k) = a ∙ k.

• As S3 is generated by the 2 permutations (12) and (123), i.e., S3 =
〈(12), (123)〉, then φ ∈ Aut(S3) if and only if φ((12)) is of order 2 in
S3 and φ((123)) is of order 3 in S3. Therefore, φ((12)) can be equal to
(12), (13) or (23), while φ((123)) can be equal to (123) or (132), and these
are exactly all the possibilities for building φ, so we have 6 elements in
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Aut(S3). To show that Aut(S3) ≈ S3, it is enough to show that Aut(S3)
is not commutative, since a not commutative group of order 6 must be
isomorphic to S3. Consider the following 2 elements in Aut(S3) defined
by

φ1((12)) = (12), φ((123)) = (132)

and

φ2((12)) = (13), φ2((123)) = (123),

so it is easily seen that φ1((13)) = φ1((12)(123)) = (12)(132) = (23) and

φ2φ1((12)) = φ2((12)) = (13), φ1φ2((12)) = φ1((13)) = (23),

which implies that φ1φ2 6= φ2φ1 so Aut(S3) is not commutative.

3 Question 3.

3.1 (a):

As |G| = 36 = 2233, we know from the Sylow’s theorems that

n2, n3 | 36, n2 = 1(mod 2) and n3 = 1(mod 3),

which imply that n3 = 1 or n3 = 4.

• If n3 = 1, it means that there exists a unique subgroup of G of order 9,
so this subgroup is a normal subgroup and we are done.

• If n3 = 4, there are 4 subgroups of G of order 9, say

Sylp3(G) = {P1, P2, P3, P4}

and set N := P1 ∩ P2 ∩ P3 ∩ P4. For every g ∈ G and 1 ≤ i ≤ 4,
P g

i := g−1Pig ∈ Sylp3(G) and clearly P g
i 6= P g

j for i 6= j, then we get that

Ng =
4⋂

i=1

P g
i =

4⋂

j=1

Pj = N,

i.e., that N � G. Moreover, we must have |N | | 9 and so |N | = 1, 3 or 9.

• If |N | = 9, it means that N ⊆ Pi and |N | = |Pi| so N = Pi for every
1 ≤ i ≤ 4 and then P1 = P2 = P3 = P4 and that is a contradiction.

• We will now show that |N | > 1 : Define the mapping φ : G → S4 by

(φ(g))(i) = j if and only if P g
i = Pj .

so this φ is a group homomorphism as,

(φ(gh))(i) = j ⇐⇒ P gh
i = Pj ⇐⇒ (P g

i )h = Pj ⇐⇒ (φ(g)φ(h))(i) = j.
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For every 1 ≤ i ≤ 4, we know that 4 = n3 = [G : NG(Pi)] and hence
|NG(Pi)| = 9 = |Pi|, which implies that NG(Pi) = Pi. Therefore,

ker(φ) = {g ∈ G : P g
i = Pi ∀1 ≤ i ≤ 4} =

4⋂

i=1

NG(Pi) =
4⋂

i=1

Pi = N

and the first homomorphism theorem implies that

G/N = G/ ker(φ) ≈ Im(φ) ≤ S4 =⇒
36
|N |

| 24 =⇒ |N | > 1.

Therefore |N | > 1 =⇒ |N | = 3 and we are done.

3.2 (f):

Define the following function φ : G → Sym(G/H) by φ(g) := φg, where

φg(aH) = (ga)H, ∀a ∈ G.

This φ is a group homomorphism, as for every g1, g2, a ∈ G we have

φg1g2(aH) = (g1g2a)H = φg1((g2a)H) = φg1 ◦ φg2(aH).

Moreover, if g ∈ ker(φ) then φg = Id which means that (ga)H = aH for every
a ∈ G, in particular for a = e we get that gH = H and hence g ∈ H. Therefore,

N := ker(φ) ≤ H

and clearly N �G as N is the kernel of a group homomorphism. It only remains
to show that N 6= {e}: If N = {e}, then

G ≈ φ(G) ≤ Sym(G/H) =⇒ n = |G| | |Sym(G/H)| = k!

and this is a contradiction.

3.3 (g):

• Let us write |G| = pak where (p, k) = 1, then we have |P | = pa. As P ≤ H,
we know that pa | |H|, so we can write |H| = pbm with (p,m) = 1 and
b ≤ a. On the other hand, H ≤ G so pbm | pak which implies that a ≥ b.
Finally, we got

|H| = pam, |P | = pa =⇒ P ∈ Sylp(H).

• Take G = S4, H = A4, so |G| = 24, |H| = 12. If P ∈ Syl2(H) then
|P | = 22 = 4 and such a subgroup can not be in Syl2(G), since then
|P | = 23 = 8.
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