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1 Question 1.

1.1

(e):

o Clearly if K =1 then X; = {(1)} is a subgroup of S,.

o If k> 1, then (1) ¢ X and then Xy is not a subgroup of S,,.

e For every o € S,, and a cycle (aq,...,ar) € Xg, we have

1.2

o Na,...,ar)o = (0(ar), ...,o(ar)) € X,
therefore

o' Xpo = {0 Y ay,....,ap)o : a1 # ... # ar € {1,...,n}}
={(o(a1),...,o(ar)) a1 # ... 2 ar € {1,..,n}} = X

and as a corollary it is easy to see that (X) <0 Sy, as
o g1 gin)o = (071910) oo (07 " gmo) € (Xi)

for every o € S, and ¢1, ..., gm € Xk (which imply that o'_lgjo' € X, for
all j =1,...,m).

(h):

Let A € GLy(C), we know that A has two eigenvalues A1, A\a € C (might be
equal) and its Jordan form might be of the forms:

A1 A0
0 A/J’\0 N

if )\1 = )\2, and

A0
0 A

if A1 # A2. In addition we know that for every B € GL3(C), the Jordan form
of B™'AB is equal to the Jordan form of A and therefore these are all the
conjugacy classes.



1.3 (i):
For every a € G, we have the following
x€a 'Ng(H)a < aza ' € Ng(H) <= (axa ") "'H(aza ) = H
<z Ya'Ha)z = a 'Ha < = € Ng(a'Ha),

so we proved that a ' Ng(H)a = Ng(a~'Ha).

2 Question 2.

2.1 (d):

Let G be a finite group, ¢ : G — G be an automorphism such that ¢(x) = x if
and only if = e, and assume that ¢ o ¢ = Id. Define the mapping ¢ : G — G
by

U(a) = p(x)a™

The mapping ¥ is 1 — 1: For every x1, x5 € G,
b(a1) = P(@2) = d(a1)ar ! = d(aa)ry ' = d(ay 'e1) = 25 '

and the last part implies that x;lml = e = o1 = Z9. As G is finite and
G — Gis1—1, it follows that v is onto G, therefore for every g € G, there
exists x € G for which

g=o(@)z™" = 6(g) = ¢(6(2)) - (") =a - p(a™ ) =g .
Then we got that ¢(g) = ¢! is an automorphism of G, so for every a,b € G:
d(ab) = ¢(a)p(b) = (ab) ™' =a b7 = (ba)™' = ab = ba

which means that G is commutative (abelian).

2.2 (g):

e As Z is generated by either 1 or —1, if ¢ € Aut(Z) then ¢(1) = 1 or
¢(1) = —1. and in any case ¢(n) = ¢(1)n; so-

Aul(Z) = {91, ¢2} ® Za,  $1(n) =n,¢2(n) = —n, neZ.

e The group Z, is generated by an element a € Z,, if and only if (a,n) =1,
therefore 1) must map the generator 1 to one of the ¢(n)-many generators
of Zy,, so

Aut(Zyn) = {o : (a,n) =1}, (k) =a- k.

e As S5 is generated by the 2 permutations (12) and (123), i.e., S3 =
((12), (123)), then ¢ € Aut(S3) if and only if ¢((12)) is of order 2 in
S3 and ¢((123)) is of order 3 in S3. Therefore, ¢((12)) can be equal to
(12), (13) or (23), while ¢((123)) can be equal to (123) or (132), and these
are exactly all the possibilities for building ¢, so we have 6 elements in



3

3.1

Aut(Ss3). To show that Aut(S3) ~ Ss, it is enough to show that Aut(Ss)
is not commutative, since a not commutative group of order 6 must be
isomorphic to S3. Consider the following 2 elements in Aut(S3) defined
by

¢1((12)) = (12), ¢((123)) = (132)

and

$2((12)) = (13), $2((123)) = (123),
so it is easily seen that ¢1((13)) = ¢1((12)(123)) = (12)(132) = (23) and

$201((12)) = #2((12)) = (13),  ¢12((12)) = ¢1((13)) = (23),

which implies that ¢1¢s # dagy so Aut(Ss3) is not commutative.

Question 3.

(a):

As |G| = 36 = 2233, we know from the Sylow’s theorems that

ng,n3 | 36,n2 = 1(mod2) and ns = 1(mod 3),

which imply that ng = 1 or nz = 4.

If n3 = 1, it means that there exists a unique subgroup of G of order 9,
so this subgroup is a normal subgroup and we are done.

If ng = 4, there are 4 subgroups of G of order 9, say
Sylp3(G) = { Py, P, P3, Py}

and set N := PPN P, N P3NPy Forevery g € Gand 1l < i < 4,
P? = g7'P,g € Sylps(G) and clearly P # P for i # j, then we get that

i.e., that N <« G. Moreover, we must have |N|| 9 and so |[N|=1,3 or 9.

If |IN| =9, it means that N C P, and |N| = |P;| so N = P; for every
1 <17 <4 and then P, = P, = P; = P, and that is a contradiction.

We will now show that |N| > 1 : Define the mapping ¢ : G — Sy by
(¢(9))(i) = j if and only if P/ = P;.
so this ¢ is a group homomorphism as,

(p(gh))(i) = j <= PI" = P; <= (P!)" = P; <= (¢(9)(h))(i) = j.



For every 1 < i < 4, we know that 4 = ng = [G : Ng(P;)] and hence
|N¢(P;)| =9 = |P;|, which implies that Ng(P;) = P;. Therefore,

4
ker(¢) ={g € G: P! = P,V1 <i<4} = (| Na(P)

i=1 i=1

I
D)
>
I
=

and the first homomorphism theorem implies that

36

G/N = G/ker(9) = Im(9) < 54 == 11

|24 = |N| > 1.
Therefore |[N| > 1 = |N| = 3 and we are done.
3.2 (f):
Define the following function ¢ : G — Sym(G/H) by ¢(g) := ¢4, where
¢g(aH) = (ga)H, VaceG.
This ¢ is a group homomorphism, as for every g1, g2,a € G we have

Pg195 (aH) = (g1920)H = ¢g1((92“)H) = ¢g, © g, (aH).

Moreover, if g € ker(¢) then ¢, = Id which means that (ga)H = aH for every
a € G, in particular for a = e we get that gH = H and hence g € H. Therefore,

N :=ker(¢) < H

and clearly N <tG as N is the kernel of a group homomorphism. It only remains
to show that N # {e}: If N = {e}, then

G~ ¢(G) < Sym(G/H) = n = |G| | |Sym(G/H)| = k!

and this is a contradiction.

3.3 (g):

e Let us write |G| = p®k where (p, k) = 1, then we have |P| =p®. As P < H,
we know that p® | |H|, so we can write |[H| = p®m with (p,m) = 1 and
b < a. On the other hand, H < G so p®m | p®k which implies that a > b.
Finally, we got

|H| = p“m,|P| = p* = P € Syl,(H).

o Take G = Sy, H = Ay, so |G| = 24,|H| = 12. If P € Syla(H) then
|P| = 22 = 4 and such a subgroup can not be in Sylz(G), since then
|P| =23 =8.



