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1 Question 1.

1.1 (g):

For every σ ∈ Sn, there exist τ1, ..., τk all cycles of lengths `1, ..., `k for which

σ = τ1 ∙ ... ∙ τk,

each τi = (a1
i , ..., a

`i
i ) can be written as

τi = (a1
i , ..., a

`i
i ) = (a1

i , a
2
i ) ∙ .... ∙ (a

1
i , a

`i
i ) = τ

(2)
i ∙ ... ∙ τ (`i)

i

and therefore

σ =
k∏

i=1

τi =
k∏

i=1

`i∏

j=2

τ
(j)
i

is a product of cycles of length 2, therefore Sn = 〈{(ij) : 1 ≤ i, j ≤ n}〉. Finally,
as (i, j) = (j, i) it follows that Sn = 〈{(i, j) : 1 ≤ i < j ≤ n}〉.

2 Question 2.

Let B = {x1, ..., xn} be a basis of Rn, φ : Sn → GLn(R) is defined by

(φ(σ))(xi) = xσ(i), ∀1 ≤ i ≤ n.

2.1 (b):

In part (a) you showed that φ : Sn → GLn(R) is a 1 − 1 homomorphism,
therefore φ : An → φ(An) is an isomorphism and An ≈ φ(An). We will now
show that φ(An) = φ(Sn) ∩ SLn(R):

• If σ ∈ An then φ(σ) is the permutation matrix corresponding to the
permutation σ and as σ is even (in An), we have

det(φ(σ)) = (−1)sign(σ) = (−1)2 = 1,

so φ(σ) ∈ φ(Sn) ∩ SLn(R) and hence φ(An) ⊆ φ(Sn) ∩ SLn(R).

• If ϕ ∈ φ(Sn) ∩ SLn(R), then ϕ = φ(σ) for some σ ∈ Sn, but as ϕ =
φ(σ) ∈ SLn(R) it means that σ∈ An (as det(φ(σ)) = (−1)sign(σ)) and
hence ϕ ∈ φ(An), i.e., φ(Sn) ∩ SLn(R) ⊆ φ(An).

Therefore, An ≈ φ(Sn) ∩ SLn(R).
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2.2 (e):

Let G ≤ Sn and assume there exist σ ∈ G that is odd, i.e., that σ /∈ An. Define
H := G∩An then H ⊆ G and it is a subgroup as the intersection of 2 subgroups
of Sn, so H ≤ G. As σ /∈ An, it follows that σ ∙ An = Sn \ An and then

H ∪ σ ∙ H = (G ∩ An) ∪ (σ ∙ G ∩ σ ∙ An) = (G ∩ An) ∪ (G ∩ (Sn \ An)) = G,

which means that {a ∙ H | a ∈ G} = {H,σ ∙ H} and hence the index of H in G
is exactly 2 and H is a normal subgroup of G.

3 Question 3.

Z/nZ: The group is abelian and so every subgroup is normal, therefore let
n = pn1

1 ∙ ... ∙ pnk

k where p1, ..., pk are distinct prime integers and we can
take

{1} � 〈pn1−1
1 pn2

2 ...pnk

k 〉 � ... � 〈p1p
n2
2 ...pnk

k 〉 � 〈pn2
2 ...pnk

k 〉 � ...〈pnk

k 〉 � ... � 〈pk〉 � 〈1〉 = Zn,

where it is easily seen that

ord(pm1
1 ...pmk

k ) = pn1−m1
1 ∙ ... ∙ pnk−mk

k , for m1 ≤ n1, ...,mk ≤ nk,

so it follows that all the quotient groups are of prime order and so simple.

D2n: As σ ∈ D2n is of order n we have the series

{e} � 〈σ〉 � D2n

but 〈σ〉 ≈ Zn is not necessary simple, so we have to use the composition
series we built above for Zn, to get (if n = pn1

1 ∙ ... ∙ pnk

k )

{e} � 〈σp
n1−1
1 p

n2
2 ...p

nk
k 〉 � ... � 〈σp1p

n2
2 ...p

nk
k 〉 � 〈σp

n2
2 ...p

nk
k 〉 � ...〈σp

nk
k 〉 � ... � 〈σ〉 � D2n,

and this is a composition series for D2n.

Q8: Notice that

{1} ≤ 〈−1〉 = {−1, 1} ≤ 〈i〉 = {1,−1, i, -i} ≤ Q8

and that
|〈−1〉| = |〈i〉|/|〈−1〉| = |Q8|/|〈i〉| = 2

implies (as a subgroup of index 2 must be normal subgroup) that

{1} � 〈−1〉 � 〈i〉 � Q8

and this is a composition series, as the factors are all of prime order and
so simple.

Sn: If n 6= 4, then we have the composition series

{(1)} � An � Sn,
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as we know that An/{(1)} ≈ An and Sn/An ≈ Z2 are simple. If n = 4,
we have the composition series of the form

{(1))} � U4 � V4 � A4 � S4,

where U4 = {(1), (12)(34)} and V4 = {(1), (12)(34), (13)(24), (14)(23)}
with

|S4/A4| = 2, |A4/V4| = 3, |V4/U4| = 2 and |U4/{(1)}| = 2

which are all primes and so are simple factors!

4 Question 5.

4.1 (b):

Easy calculations show that:

σ(x1 + x2) = xσ(1) + xσ(2)

and then

G(x1 + x2) = {σ(x1 + x2) : σ ∈ S4} = {xi + xj : 1 ≤ i 6= j ≤ n}

= {x1 + x2, x1 + x3, x1 + x4, x2 + x3, x2 + x4, x3 + x4}.

Also-

Gx1+x2 = {σ ∈ S4 : σ(x1 + x2) = (x1 + x2)} = {σ ∈ S4 : xσ(1) + xσ(2) = x1 + x2}

= {σ ∈ S4 : σ(1) = 1, σ(2) = 2 or σ(1) = 2, σ(2) = 1}

= {(1), (12)(34), (12), (12)(34)}

and this is an abelian group of order 4 isomorphic to Z2 × Z2.

4.2 (c):

G(x1x2 + x3x4) = {σ(x1x2 + x3x4) : σ ∈ S4} = {xσ(1)xσ(2) + xσ(3)xσ(4) : σ ∈ S4}

= {x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3}

and

Gx1x2+x3x4 = {σ ∈ S4 : σ(x1x2 + x3x4) = x1x2 + x3x4}

= {σ ∈ S4 : xσ(1)xσ(2) + xσ(3)xσ(4) = x1x2 + x3x4}

= {(1), (34), (12), (12)(34), (13)(24), (14)(23), (1324), (1423)}

ad this is easily seen a group of order 8 isomorphic to D8, as (34) is of order 2,
(1324) is of order 4 and (34)(1324)(34) = (1423) = (1324)−1.
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4.3 (d):

G((x1 + x2)(x3 + x4)) = {σ((x1 + x2)(x3 + x4)) : σ ∈ S4}

= {(xσ(1) + xσ(2))(xσ(3) + xσ(4)) : σ ∈ S4}

= {(x1 + x2)(x3 + x4), (x1 + x3)(x2 + x4), (x1 + x4)(x2 + x3)}

and

σ((x1 + x2)(x3 + x4)) = (x1 + x2)(x3 + x4) ⇐⇒ (xσ(1) + xσ(2))(xσ(3) + xσ(4)) = (x1 + x2)(x3 + x4)

⇐⇒ σ({1, 2}) = {1, 2} or σ({1, 2}) = {3, 4}

then

G(x1+x2)(x3+x4) = {(1), (34), (12), (12)(34), (13)(24), (14)(23), (1324), (1423)} = Gx!x2+x3x4 .

5 Question 7.

5.1 (a):

It is easy to see that if

G = Z2 × Z2 × ... =
∏

α∈I

Z2

is a group, where I can be any set of indices, with the property that

x ∈ G =⇒ x = (xα)α∈I , xα ∈ Z2 =⇒ x2 = (x2
α)α∈I = (0)α∈I = eG.

5.2 (b):

Let φ : G → H be an homomorphism. We can define the mappings

π : G → G/[G,G], by π(g) = g ∙ [G,G]

is the canonical mapping and

j : G/[G,G] → H, by j(g ∙ [G,G]) = φ(g).

It is easily seen that (j ◦ π)(g) = j(π(g)) = j(g ∙ [G,G]) = φ(g), i.e., that

φ = j ◦ π.

If there are 2 mappings j1, j2 : G/[G,G] → H such that

φ = j1 ◦ π = j2 ◦ π

then for every g ∈ G we have

j1(g1 ∙ [G,G]) = j1(π(g)) = φ(g) = j2(π(g)) = j2(g ∙ [G,G]),

i.e., j1 = j2 and this follows simply as the mapping π is onto G/[G,G].
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