Algebraic Structures- Solutions of Homework 7

written by Motke Porat

December 2017

1 Question 1.

1.1 (g):

For every $\sigma \in S_{n}$, there exist $\tau_{1}, \ldots, \tau_{k}$ all cycles of lengths $\ell_{1}, \ldots, \ell_{k}$ for which

$$
\sigma=\tau_{1} \cdot \ldots \cdot \tau_{k}
$$

each $\tau_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{\ell_{i}}\right)$ can be written as

$$
\tau_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{\ell_{i}}\right)=\left(a_{i}^{1}, a_{i}^{2}\right) \cdot \ldots . \cdot\left(a_{i}^{1}, a_{i}^{\ell_{i}}\right)=\tau_{i}^{(2)} \cdot \ldots \cdot \tau_{i}^{\left(\ell_{i}\right)}
$$

and therefore

$$
\sigma=\prod_{i=1}^{k} \tau_{i}=\prod_{i=1}^{k} \prod_{j=2}^{\ell_{i}} \tau_{i}^{(j)}
$$

is a product of cycles of length 2 , therefore $S_{n}=\langle\{(i j): 1 \leq i, j \leq n\}\rangle$. Finally, as $(i, j)=(j, i)$ it follows that $S_{n}=\langle\{(i, j): 1 \leq i<j \leq n\}\rangle$.

2 Question 2.

Let $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of $\mathbb{R}^{n}, \phi: S_{n} \rightarrow G L_{n}(\mathbb{R})$ is defined by

$$
(\phi(\sigma))\left(x_{i}\right)=x_{\sigma(i)}, \quad \forall 1 \leq i \leq n .
$$

2.1 (b):

In part (a) you showed that $\phi: S_{n} \rightarrow G L_{n}(\mathbb{R})$ is a $1-1$ homomorphism, therefore $\phi: A_{n} \rightarrow \phi\left(A_{n}\right)$ is an isomorphism and $A_{n} \approx \phi\left(A_{n}\right)$. We will now show that $\phi\left(A_{n}\right)=\phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R})$:

- If $\sigma \in A_{n}$ then $\phi(\sigma)$ is the permutation matrix corresponding to the permutation σ and as σ is even (in A_{n}), we have

$$
\operatorname{det}(\phi(\sigma))=(-1)^{\operatorname{sign}(\sigma)}=(-1)^{2}=1,
$$

so $\phi(\sigma) \in \phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R})$ and hence $\phi\left(A_{n}\right) \subseteq \phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R})$.

- If $\varphi \in \phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R})$, then $\varphi=\phi(\sigma)$ for some $\sigma \in S_{n}$, but as $\varphi=$ $\phi(\sigma) \in S L_{n}(\mathbb{R})$ it means that $\sigma \in A_{n}\left(\right.$ as $\left.\operatorname{det}(\phi(\sigma))=(-1)^{\operatorname{sign}(\sigma)}\right)$ and hence $\varphi \in \phi\left(A_{n}\right)$, i.e., $\phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R}) \subseteq \phi\left(A_{n}\right)$.
Therefore, $A_{n} \approx \phi\left(S_{n}\right) \cap S L_{n}(\mathbb{R})$.

2.2 (e):

Let $G \leq S_{n}$ and assume there exist $\sigma \in G$ that is odd, i.e., that $\sigma \notin A_{n}$. Define $H:=G \cap A_{n}$ then $H \subseteq G$ and it is a subgroup as the intersection of 2 subgroups of S_{n}, so $H \leq G$. As $\sigma \notin A_{n}$, it follows that $\sigma \cdot A_{n}=S_{n} \backslash A_{n}$ and then

$$
H \cup \sigma \cdot H=\left(G \cap A_{n}\right) \cup\left(\sigma \cdot G \cap \sigma \cdot A_{n}\right)=\left(G \cap A_{n}\right) \cup\left(G \cap\left(S_{n} \backslash A_{n}\right)\right)=G,
$$

which means that $\{a \cdot H \mid a \in G\}=\{H, \sigma \cdot H\}$ and hence the index of H in G is exactly 2 and H is a normal subgroup of G.

3 Question 3.

$\mathbb{Z} / n \mathbb{Z}$: The group is abelian and so every subgroup is normal, therefore let $n=p_{1}^{n_{1}} \cdot \ldots \cdot p_{k}^{n_{k}}$ where p_{1}, \ldots, p_{k} are distinct prime integers and we can take

$$
\{1\} \triangleleft\left\langle p_{1}^{n_{1}-1} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}\right\rangle \triangleleft \ldots \triangleleft\left\langle p_{1} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}\right\rangle \triangleleft\left\langle p_{2}^{n_{2} \ldots} \ldots p_{k}^{n_{k}}\right\rangle \triangleleft \ldots\left\langle p_{k}^{n_{k}}\right\rangle \triangleleft \ldots \triangleleft\left\langle p_{k}\right\rangle \triangleleft\langle 1\rangle=\mathbb{Z}_{n},
$$

where it is easily seen that

$$
\operatorname{ord}\left(p_{1}^{m_{1}} \ldots p_{k}^{m_{k}}\right)=p_{1}^{n_{1}-m_{1}} \cdot \ldots \cdot p_{k}^{n_{k}-m_{k}}, \quad \text { for } \quad m_{1} \leq n_{1}, \ldots, m_{k} \leq n_{k},
$$

so it follows that all the quotient groups are of prime order and so simple.
$D_{2 n}:$ As $\sigma \in D_{2 n}$ is of order n we have the series

$$
\{e\} \triangleleft\langle\sigma\rangle \triangleleft D_{2 n}
$$

but $\langle\sigma\rangle \approx \mathbb{Z}_{n}$ is not necessary simple, so we have to use the composition series we built above for \mathbb{Z}_{n}, to get (if $n=p_{1}^{n_{1}} \cdot \ldots \cdot p_{k}^{n_{k}}$)
$\{e\} \triangleleft\left\langle\sigma^{p_{1}^{n_{1}-1} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}}\right\rangle \triangleleft \ldots \triangleleft\left\langle\sigma^{p_{1} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}}\right\rangle \triangleleft\left\langle\sigma_{2}^{p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}}\right\rangle \triangleleft \ldots\left\langle\sigma^{p_{k}^{n_{k}}}\right\rangle \triangleleft \ldots \triangleleft\langle\sigma\rangle \triangleleft D_{2 n}$,
and this is a composition series for $D_{2 n}$.
Q_{8} : Notice that

$$
\{1\} \leq\langle-1\rangle=\{-1,1\} \leq\langle\mathbf{i}\rangle=\{1,-1, \mathbf{i},-\mathbf{-}\} \leq Q_{8}
$$

and that

$$
|\langle-1\rangle|=|\langle\mathbf{i}\rangle| / /\langle-1\rangle\left|=\left|Q_{8}\right| / /\langle\mathbf{i}\rangle\right|=2
$$

implies (as a subgroup of index 2 must be normal subgroup) that

$$
\{1\} \triangleleft\langle-1\rangle \triangleleft\langle\mathbf{i}\rangle \triangleleft Q_{8}
$$

and this is a composition series, as the factors are all of prime order and so simple.
S_{n} : If $n \neq 4$, then we have the composition series

$$
\{(1)\} \triangleleft A_{n} \triangleleft S_{n},
$$

as we know that $A_{n} /\{(1)\} \approx A_{n}$ and $S_{n} / A_{n} \approx \mathbb{Z}_{2}$ are simple. If $n=4$, we have the composition series of the form

$$
\{(1))\} \triangleleft U_{4} \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4},
$$

where $U_{4}=\{(1),(12)(34)\}$ and $V_{4}=\{(1),(12)(34),(13)(24),(14)(23)\}$ with

$$
\left|S_{4} / A_{4}\right|=2,\left|A_{4} / V_{4}\right|=3,\left|V_{4} / U_{4}\right|=2 \text { and }\left|U_{4} /\{(1)\}\right|=2
$$

which are all primes and so are simple factors!

4 Question 5.

4.1 (b):

Easy calculations show that:

$$
\sigma\left(x_{1}+x_{2}\right)=x_{\sigma(1)}+x_{\sigma(2)}
$$

and then

$$
\begin{aligned}
G\left(x_{1}+x_{2}\right) & =\left\{\sigma\left(x_{1}+x_{2}\right): \sigma \in S_{4}\right\}=\left\{x_{i}+x_{j}: 1 \leq i \neq j \leq n\right\} \\
& =\left\{x_{1}+x_{2}, x_{1}+x_{3}, x_{1}+x_{4}, x_{2}+x_{3}, x_{2}+x_{4}, x_{3}+x_{4}\right\}
\end{aligned}
$$

Also-

$$
\begin{aligned}
G_{x_{1}+x_{2}} & =\left\{\sigma \in S_{4}: \sigma\left(x_{1}+x_{2}\right)=\left(x_{1}+x_{2}\right)\right\}=\left\{\sigma \in S_{4}: x_{\sigma(1)}+x_{\sigma(2)}=x_{1}+x_{2}\right\} \\
& =\left\{\sigma \in S_{4}: \sigma(1)=1, \sigma(2)=2 \text { or } \sigma(1)=2, \sigma(2)=1\right\} \\
& =\{(1),(12)(34),(12),(12)(34)\}
\end{aligned}
$$

and this is an abelian group of order 4 isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

$4.2 \quad(\mathrm{c}):$

$$
\begin{aligned}
G\left(x_{1} x_{2}+x_{3} x_{4}\right) & =\left\{\sigma\left(x_{1} x_{2}+x_{3} x_{4}\right): \sigma \in S_{4}\right\}=\left\{x_{\sigma(1)} x_{\sigma(2)}+x_{\sigma(3)} x_{\sigma(4)}: \sigma \in S_{4}\right\} \\
& =\left\{x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{3}+x_{2} x_{4}, x_{1} x_{4}+x_{2} x_{3}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
G_{x_{1} x_{2}+x_{3} x_{4}} & =\left\{\sigma \in S_{4}: \sigma\left(x_{1} x_{2}+x_{3} x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}\right\} \\
& =\left\{\sigma \in S_{4}: x_{\sigma(1)} x_{\sigma(2)}+x_{\sigma(3)} x_{\sigma(4)}=x_{1} x_{2}+x_{3} x_{4}\right\} \\
& =\{(1),(34),(12),(12)(34),(13)(24),(14)(23),(1324),(1423)\}
\end{aligned}
$$

ad this is easily seen a group of order 8 isomorphic to D_{8}, as (34) is of order 2 , (1324) is of order 4 and $(34)(1324)(34)=(1423)=(1324)^{-1}$.

4.3 (d):

$$
\begin{aligned}
G\left(\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)\right) & =\left\{\sigma\left(\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)\right): \sigma \in S_{4}\right\} \\
& =\left\{\left(x_{\sigma(1)}+x_{\sigma(2)}\right)\left(x_{\sigma(3)}+x_{\sigma(4)}\right): \sigma \in S_{4}\right\} \\
& =\left\{\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right),\left(x_{1}+x_{3}\right)\left(x_{2}+x_{4}\right),\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma\left(\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)\right)=\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right) & \Longleftrightarrow\left(x_{\sigma(1)}+x_{\sigma(2)}\right)\left(x_{\sigma(3)}+x_{\sigma(4)}\right)=\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right) \\
& \Longleftrightarrow \sigma(\{1,2\})=\{1,2\} \text { or } \sigma(\{1,2\})=\{3,4\}
\end{aligned}
$$

then
$G_{\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)}=\{(1),(34),(12),(12)(34),(13)(24),(14)(23),(1324),(1423)\}=G_{x!x_{2}+x_{3} x_{4}}$.

5 Question 7.

5.1 (a):

It is easy to see that if

$$
G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \ldots=\prod_{\alpha \in I} \mathbb{Z}_{2}
$$

is a group, where I can be any set of indices, with the property that

$$
x \in G \Longrightarrow x=\left(x_{\alpha}\right)_{\alpha \in I}, x_{\alpha} \in \mathbb{Z}_{2} \Longrightarrow x^{2}=\left(x_{\alpha}^{2}\right)_{\alpha \in I}=(0)_{\alpha \in I}=e_{G} .
$$

5.2 (b):

Let $\phi: G \rightarrow H$ be an homomorphism. We can define the mappings

$$
\pi: G \rightarrow G /[G, G], \text { by } \pi(g)=g \cdot[G, G]
$$

is the canonical mapping and

$$
j: G /[G, G] \rightarrow H, \text { by } j(g \cdot[G, G])=\phi(g) .
$$

It is easily seen that $(j \circ \pi)(g)=j(\pi(g))=j(g \cdot[G, G])=\phi(g)$, i.e., that

$$
\phi=j \circ \pi .
$$

If there are 2 mappings $j_{1}, j_{2}: G /[G, G] \rightarrow H$ such that

$$
\phi=j_{1} \circ \pi=j_{2} \circ \pi
$$

then for every $g \in G$ we have

$$
j_{1}\left(g_{1} \cdot[G, G]\right)=j_{1}(\pi(g))=\phi(g)=j_{2}(\pi(g))=j_{2}(g \cdot[G, G]),
$$

i.e., $j_{1}=j_{2}$ and this follows simply as the mapping π is onto $G /[G, G]$.

