Algebraic Structures- Solutions of Homework 8

written by Motke Porat

December 2017

1 Question 1.

1.1 (b):

- If $x \in S$ is invertible, it means that there exists $y \in S$ such that $x y=$ $y x=1_{S}$. Then, $y \in R$ and $x y=y x=1_{R}$ so x is invertible in R.
- The converse is not always true: Take R to be the ring of real numbers and S be its sub-ring that is all the integers. The number 2 has an inverse in \mathbb{R} (which is $1 / 2$) but 2 is not invertible in \mathbb{Z}.

2 Question 2.

2.1 (a):

- If $d \geq 1: V_{d}$ is not a ring, as it is not closed under multiplication: $x^{d} \in V_{d}$ but $x^{d} \cdot x^{d}=x^{2 d} \notin V_{d}$ as $2 d>d$.
- If $d=0: V_{0}$ is exactly the field \mathbb{K} and that is a ring.
- if $p_{1}(x) p_{2}(x)=0$ where $p_{1}, p_{2} \in V_{d}$ then clearly $p_{1}=0$ or $p_{2}=0$, as p_{1} and p_{2} are polynomials. Then V_{d} is an integral domain.

2.2 (c):

- $\mathbb{C}^{r}(\mathbb{R}, 0)$ is a ring and the only non-obvious properties to check are that $\mathbb{C}^{r}(\mathbb{R}, 0)$ is closed under summation and multiplication: If $f, g \in \mathbb{C}^{r}(\mathbb{R}, 0)$ then f, g are continuously differentiable r-many times around 0 , which imply that so are $f+g$ and $f g$, so $f+g, f g \in \mathbb{C}^{r}(\mathbb{R}, 0)$.
- $\mathbb{C}^{r}(\mathbb{R}, 0)$ is not an integral domain: let

$$
f(x)=\left\{\begin{array}{ll}
x^{r+1} & : x>0 \\
0 & : x \leq 0
\end{array} \quad \text { and } \quad g(x)= \begin{cases}0 & : x>0 \\
x^{r+1} & : x \leq 0\end{cases}\right.
$$

then f and g are continuously differentiable r-many times in \mathbb{R}, clearly not vanishes in \mathbb{R}, i.e., $f \neq 0$ and $g \neq 0$, but $f(x) g(x)=0$ for any $x \in \mathbb{R}$.

2.3 (e):

- This is not a ring, as it is not closed under multiplication: let

$$
f(x)=g(x)= \begin{cases}1 / \sqrt{x} & : x \in(0,1) \\ 0 & : x \notin(0,1)\end{cases}
$$

then

$$
\left|\int_{-\infty}^{\infty} f(x) d x\right|=\left|\int_{-\infty}^{\infty} g(x) d x\right|=\left|\int_{0}^{1} \frac{d x}{\sqrt{x}}\right|<\infty
$$

but

$$
\left|\int_{-\infty}^{\infty} f(x) g(x) d x\right|=\left|\int_{0}^{1} \frac{d x}{x}\right|=\infty,
$$

i.e., $f, g \in R$ but $f g \notin R$.

- This is not an integral domain: let

$$
f(x)=\left\{\begin{array}{ll}
1 & : x \in(0,1) \\
0 & : x \notin(0,1)
\end{array} \quad \text { and } \quad g(x)= \begin{cases}1 & : x \in(2,3) \\
0 & : x \notin(2,3)\end{cases}\right.
$$

clearly $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} g(x) d x=1$ so f and g are elements in the space, but $f \neq 0, g \neq 0$ and $f(x) g(x)=0$ for any $x \in \mathbb{R}$.

3 Question 3.

3.1 (b):

Let R be a commutative ring with a unit 1_{R} and let $I, J \triangleleft R$ such that $I+J=R$.

- If $x \in I \cdot J$, then $x=i j$ for some $i \in I, j \in J$ and as I and J are ideals it follows that $x=i j \in I$ and $x=i j \in J$, so $x \in I \cap j$, i.e., $I \cdot J \subseteq I \cap J$.
- If $x \in I \cap J$, then as $I+J=R$ there exist $i \in I$ and $j \in J$ such that

$$
1_{R}=i+j .
$$

Then $x=x \cdot 1_{R}=x(i+j)=x \cdot i+x \cdot j=i \cdot x+x \cdot j \in I \cdot J$, as $i, x \in I$ and $x, j \in J$, i.e., $I \cap J \subseteq I \cdot J$.

3.2 (c):

Suppose that I is an ideal of $M_{n \times n}(R)$ and let

$$
J=\left\{x \mid \exists M \in I \text { such that } M_{1,1}=x\right\} .
$$

Recall that $E_{i, j}$ is the matrix with all 0 entries except for 1_{R} in the (i, j) entry.

1) J is an ideal of R : If $x, y \in J$ and $r \in R$, there exist $A, B \in I$ such that $x=A_{1,1}$ and $y=B_{1,1}$. As $I \triangleleft M_{n \times n}(R)$ it follows that

$$
A r, r A, A-B \in I
$$

and hence

$$
(A r)_{1,1}=x r \in J,(r A)_{1,1}=r x \in J \text { and }(A-B)_{1,1}=x-y \in J,
$$

which exactly mean that $J \triangleleft R$.
2) $M_{n}(J) \subseteq I$: If $A \in M_{n \times n}(J)$, then $A=\sum_{i, j=1}^{n} a_{i, j} E_{i, j}$ where $a_{i, j} \in J$, therefore $\left(M^{(i, j)}\right)_{1,1}=a_{i, j}$ for some $M^{(i, j)} \in I$ and hence ($\operatorname{as} I \triangleleft M_{n \times n}(R)$):

$$
a_{i, j} E_{i, j}=\left(M^{(i, j)}\right)_{1,1} E_{i, j}=E_{i, 1} M^{(i, j)} E_{1, j} \in I
$$

for every $1 \leq i, j \leq n$, so $A=\sum_{i, j=1}^{n} a_{i, j} E_{i, j} \in I$.
3) $I \subseteq M_{n \times n}(J)$: If $A \in I$, then for every $1 \leq i, j \leq n$ we have

$$
a_{i, j}=\left(E_{1, i} A E_{j, 1}\right)_{1,1}
$$

and as $I \triangleleft M_{n \times n}(R), E_{1, i} A E_{j, 1} \in I$ and thus $a_{i, j} \in J$, i.e., $A \in M_{n \times n}(J)$.

4 Question 5.

4.1 (b):

\mathbb{H}^{\times}is the subset of \mathbb{H} consists of all invertible elements in \mathbb{H}, so we need to show that every element $q \in \mathbb{H}$ that is $q \neq 0$, is invertible, or in other words that \mathbb{H} is a division ring: let $q \neq 0$ in \mathbb{H}, then $q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ for some $a, b, c, d \in \mathbb{R}$ such that a, b, c, d are not all equal 0 , i.e., such that $a^{2}+b^{2}+c^{2}+d^{2} \neq 0$. It is a simple computation to show that

$$
q \cdot \bar{q}=(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})(a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k})=a^{2}+b^{2}+c^{2}+d^{2}
$$

and therefore q is invertible in \mathbb{H} and

$$
q^{-1}=\frac{1}{a^{2}+b^{2}+c^{2}+d^{2}} \bar{q}=\frac{a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}}{a^{2}+b^{2}+c^{2}+d^{2}} \in \mathbb{H} .
$$

$4.2 \quad(\mathrm{c}):$

Define $\|q\|:=\sqrt{q \cdot \bar{q}}$ for every $q \in \mathbb{H}$, that can be written as

$$
\|q\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}, \quad \text { when } q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

This defined a norm on \mathbb{H} :

- For every $q=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \in \mathbb{H}$:

$$
\|q\|=0 \Longleftrightarrow \sqrt{a^{2}+b^{2}+c^{2}+d^{2}}=0 \Longleftrightarrow a=b=c=d=0 \Longleftrightarrow q=0 .
$$

- For every $\alpha \in \mathbb{R}$:

$$
\|\alpha q\|=\|\alpha a+\alpha b \mathbf{i}+\alpha c \mathbf{j}+\alpha d \mathbf{k}\|=\sqrt{(\alpha a)^{2}+(\alpha b)^{2}+(\alpha c)^{2}+(\alpha d)^{2}}=|\alpha| \cdot\|q\|
$$

- For every $q_{1}=a_{1}+b_{1} \mathbf{i}+c_{1} \mathbf{j}+d_{1} \mathbf{k}, q_{2}=a_{2}+b_{2} \mathbf{i}+c_{2} \mathbf{j}+d_{2} \mathbf{k} \in \mathbb{H}$:

$$
\begin{aligned}
\left\|q_{1}+q_{2}\right\| & =\sqrt{\left(a_{1}+a_{2}\right)^{2}+\left(b_{1}+b_{2}\right)^{2}+\left(c_{1}+c_{2}\right)^{2}+\left(d_{1}+d_{2}\right)^{2}} \\
& =\left\|\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)+\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)\right\|_{\mathbb{R}^{4}} \leq\left\|\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)\right\|_{\mathbb{R}^{4}}+\left\|\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)\right\|_{\mathbb{R}^{4}} \\
& =\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}}+\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}}=\left\|q_{1}\right\|+\left\|q_{2}\right\|
\end{aligned}
$$

where we use a property of the standard norm of \mathbb{R}^{4}.
So $\|\cdot\|$ defines a norm on \mathbb{H} and for every $q_{1}, q_{2} \in \mathbb{H}$:

$$
\begin{aligned}
q_{1} \cdot q_{2} & =\left(a_{1}+b_{1} \mathbf{i}+c_{1} \mathbf{j}+d_{1} c \mathbf{k}\right)\left(a_{2}+b_{2} \mathbf{i}+c_{2} \mathbf{j}+d_{2} \mathbf{k}\right) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right) \mathbf{i} \\
& +\left(a_{1} c_{2}+c_{1} a_{2}-b_{1} d_{2}+d_{1} b_{2}\right) \mathbf{j}+\left(a_{1} d_{2}+d_{1} a_{2}+b_{1} c_{2}-c_{1} b_{2}\right) \mathbf{k}
\end{aligned}
$$

SO-

$$
\begin{aligned}
& \left\|q_{1} \cdot q_{2}\right\|^{2}=\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2}\right)^{2}+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right)^{2} \\
& +\left(a_{1} c_{2}+c_{1} a_{2}-b_{1} d_{2}+d_{1} b_{2}\right)^{2}+\left(a_{1} d_{2}+d_{1} a_{2}+b_{1} c_{2}-c_{1} b_{2}\right)^{2} \\
& =a_{1}^{2} a_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}-2 a_{1} a_{2} c_{1} c_{2}-2 a_{1} a_{2} d_{1} d_{2}+b_{1}^{2} b_{2}^{2}+2 b_{1} b_{2} c_{1} c_{2}+2 b_{1} b_{2} d_{1} d_{2}+c_{1}^{2} c_{2}^{2}+2 c_{1} c_{2} d_{1} d_{2}+d_{1}^{2} d_{2}^{2} \\
& +a_{1}^{2} b_{2}^{2}+2 a_{1} b_{2} b_{1} a_{2}+2 a_{1} b_{2} c_{1} d_{2}-2 a_{1} b_{2} d_{1} c_{2}+b_{1}^{2} a_{2}^{2}+2 b_{1} a_{2} c_{1} d_{2}-2 b_{1} a_{2} d_{1} c_{2}+c_{1}^{2} d_{2}^{2}-2 c_{1} d_{2} d_{1} c_{2}+d_{1}^{2} c_{2}^{2} \\
& +a_{1}^{2} c_{2}^{2}+2 a_{1} c_{2} c_{1} a_{2}-2 a_{1} c_{2} b_{1} d_{2}+2 a_{1} c_{2} d_{1} b_{2}+c_{1}^{2} a_{2}^{2}-2 c_{1} a_{2} b_{1} d_{2}+2 c_{1} a_{2} d_{1} b_{2}+b_{1}^{2} d_{2}^{2}-2 b_{1} d_{2} d_{1} b_{2}+d_{1}^{2} b_{2}^{2} \\
& +a_{1}^{2} d_{2}^{2}+2 a_{1} d_{2} d_{1} a_{2}+2 a_{1} d_{2} b_{1} c_{2}-2 a_{1} d_{2} c_{1} b_{2}+d_{1}^{2} a_{2}^{2}+2 d_{1} a_{2} b_{1} c_{2}-2 d_{1} a_{2} c_{1} b_{2}+b_{1}^{2} c_{2}^{2}-2 b_{1} c_{2} c_{1} b_{2}+c_{1}^{2} b_{2}^{2} \\
& =\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}+d_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}+d_{2}^{2}\right)=\left\|q_{1}\right\|^{2} \cdot\left\|q_{2}\right\|^{2}
\end{aligned}
$$

4.3 (f):

Let $q_{1}=q_{2}=q$ and use the calculation of $q_{1} \cdot q_{2}$ above to show that

$$
q^{2}=\left(a_{1}^{2}-b_{1}^{2}-c_{1}^{2}-d_{1}^{2}\right)+\left(2 a_{1} b_{1}\right) \mathbf{i}+\left(2 a_{1} c_{1}\right) \mathbf{j}+\left(2 a_{1} d_{1}\right) \mathbf{k}
$$

and thus

$$
q^{2}=-1 \Longleftrightarrow a_{1}^{2}-b_{1}^{2}-c_{1}^{2}-d_{1}^{2}=-1, a_{1} b_{1}=a_{1} c_{1}=a_{1} d_{1}=0
$$

If $a_{1} \neq 0$, then $b_{1}=c_{1}=d_{1}=0$ and $\mathrm{a}_{1}^{2}=-1$ and this is a contradiction, as $a_{1} \in \mathbb{R}$, so

$$
\left\{q \in \mathbb{H}: q^{2}=-1\right\}=\left\{q=b_{1} \mathbf{i}+c_{1} \mathbf{j}+d_{1} \mathbf{k}: b_{1}^{2}+c_{1}^{2}+d_{1}^{2}=1\right\}
$$

and there infinitely many solutions.

5 Question 6.

If $x \in R$ such that $x^{2}=1_{R}$, then $0=x^{2}-1_{R}=\left(x-1_{R}\right)\left(x+1_{R}\right)$ and since R is an integral domain (has no zero divisors) it follows that

$$
x-1_{R}=0 \text { or } x+1_{R}=0,
$$

i.e., that $x=1_{R}$ or $x=-1_{R}$.

