Algebraic Structures- Solutions of Homework 9

written by Motke Porat

January 2018

1 Question 1.

1.1 (b):

Assume that R is a finite integral domain, so denote $R=\left\{r_{1}, \ldots, r_{n}\right\}$. For every $0 \neq r \in R$ we have $|r R|=|R|$, otherwise there exist $r_{i}, r_{j} \in R$ such that $r_{i} \neq r_{j}$ but $r r_{i}=r r_{j}$, so $r\left(r_{i}-r_{j}\right)=0$ and as R has no zero divisors and $r \neq 0$, we get that $r_{i}-r_{j}=0$, i.e., that $r_{i}=r_{j}$. So $|r R|=|R|$ which actually means that $r R=R$ (as R is finite) and therefore there exists $x \in R$ for which $r x=1$. Therefore, every nonzero element in R has an inverse in R so R is a field.

2 Question 2.

2.1 (c):

Let $I \subset J \subset R$ where $I, J \triangleleft R$. We first show that $J / I \triangleleft R / I$:

- If $a+I, b+I \in J / I$, i.e., if $a, b \in J$, then

$$
(a+I)-(b+I)=(a-b)+I \in J / I
$$

as $J \leq R$ and hence $a-b \in J$.

- If $a+I \in J / I$ and $r+I \in R / I$, i.e., if $a \in J$ and $r \in R$, then

$$
(a+I)(r+I)=a r+I \in J / I, \quad(r+I)(a+I)=a r+I \in J / I
$$

as $J \triangleleft R$ and hence $r a, a r \in J$.
Next, define the mapping

$$
\phi: R / I \rightarrow R / J \text { by } \phi(r+I)=r+J .
$$

It is easy to see that ϕ is a ring homomorphism: if $r_{1}, r_{2} \in R$ then
$\phi\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right)=\phi\left(\left(r_{1}+r_{2}\right)+I\right)=\left(r_{1}+r_{2}\right)+J=\phi\left(r_{1}+I\right)+\phi\left(r_{2}+I\right)$
and

$$
\phi\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)=\phi\left(r_{1} r_{2}+I\right)=r_{1} r_{2}+J=\phi\left(r_{1}+I\right) \phi\left(r_{2}+I\right)
$$

that $\operatorname{ker} \phi=J / I$:
$r+I \in \operatorname{ker} \phi \Longleftrightarrow \phi(r+I)=J \Longleftrightarrow x+J=J \Longleftrightarrow x \in J \Longleftrightarrow x+I \in J / I$
so from the first homomorphism theorem it follows that

$$
(R / I) /(J / I) \approx \phi(R / I)=R / J
$$

3 Question 3.

Let R be a commutative ring with a unit $1 \neq 0$ and $I_{1}, \ldots, I_{k} \triangleleft R$.

3.1 (a):

The mapping $\phi: R \rightarrow R / I_{1} \times \ldots \times R / I_{k}$ defined by $\phi(r)=\left(r+I_{1}, \ldots, r+I_{k}\right)$ is a ring homomorphism: For every $r_{1}, r_{2} \in R$ we have

$$
\begin{aligned}
\phi\left(r_{1}+r_{2}\right) & =\left(\left(r_{1}+r_{2}\right)+I_{1}, \ldots,\left(r_{1}+r_{2}\right)+I_{k}\right) \\
& =\left(r_{1}+I_{1}, \ldots, r_{1}+I_{k}\right)+\left(r_{2}+I_{1}, \ldots, r_{2}+I_{k}\right)=\phi\left(r_{1}\right)+\phi\left(r_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi\left(r_{1} r_{2}\right) & =\left(r_{1} r_{2}+I_{1}, \ldots, r_{1} r_{2}+I_{k}\right) \\
& =\left(r_{1}+I_{1}, \ldots, r_{1}+I_{k}\right)\left(r_{2}+I_{1}, \ldots, r_{2}+I_{k}\right)=\phi\left(r_{1}\right) \phi\left(r_{2}\right) .
\end{aligned}
$$

We can easily see that $\operatorname{ker} \phi=I_{1} \cap \ldots \cap I_{k}$, as

$$
\begin{aligned}
r \in \operatorname{ker} \phi & \Longleftrightarrow\left(r+I_{1}, \ldots, r+I_{k}\right)=\left(I_{1}, \ldots, I_{k}\right) \\
& \Longleftrightarrow r+I_{1}=I_{1}, \ldots, r+I_{k}=I_{k} \Longleftrightarrow r \in I_{1}, \ldots, r \in I_{k} \\
& \Longleftrightarrow r \in I_{1} \cap \ldots \cap I_{k} .
\end{aligned}
$$

3.2 (b):

We prove this by induction. If $k=2$, we assume that $I_{1}+I_{2}=R$, therefore there exist $t_{1} \in I_{1}$ and $t_{2} \in I_{2}$ such that $t_{1}+t_{2}=1$. Then

$$
t_{1}+I_{2}=\left(t_{1}+t_{2}\right)+I_{2}=1+I_{2} \quad \text { and } \quad t_{2}+I_{1}=\left(t_{2}+t_{1}\right)+I_{1}=1+I_{1}
$$

and hence for every $r, s \in R$

$$
r t_{2}+s t_{1}+I_{1}=r+I_{1} \quad \text { and } \quad r t_{2}+s t_{1}+I_{2}=s+I_{2},
$$

which imply that

$$
\phi\left(r t_{2}+s t_{1}\right)=\left(\left(r t_{2}+s t_{1}\right)+I_{1},\left(r t_{2}+s t_{1}\right)+I_{2}\right)=\left(r+I_{1}, s+I_{2}\right)
$$

and this proves that ϕ is onto $R / I_{1} \times R / I_{2}$. The fact that $I_{1} \cap I_{2}=I_{1} \cdot I_{2}$ follows from a previous exercise from the homework.

Next, assume that it is true for k and prove it for $k+1$: let $I_{1}, \ldots, I_{k+1} \triangleleft R$ such that $I_{i}+I_{j}=R$ for every $i \neq j$. Denote $I=I_{1} \cdot \ldots \cdot I_{k}$, so $I+I_{k+1}=R$: as $I_{i}+I_{k+1}=R$ for every $i=1, \ldots, k$, there exist $x_{i} \in I_{i}$ and $y_{i} \in I_{k+1}$ for $i=1, \ldots, k$ such that $x_{i}+y_{i}=1$. Then

$$
1=\left(x_{1}+y_{1}\right) \cdot \ldots \cdot\left(x_{k}+y_{k}\right)=x_{1} \cdot \ldots x_{k}+y \in I+I_{k+1} \Longrightarrow I+I_{k+1}=R
$$

as y is a sum of products of y_{1}, \ldots, y_{k} which are all in I_{k+1}. From the induction hypothesis we know that $I=I_{1} \cdot \ldots \cdot I_{k}=I_{1} \cap \ldots \cap I_{k}$ and from the first part and the homomorphism theorem we know that

$$
R / I \approx R / I_{1} \times \ldots \times R / I_{k}
$$

From what we proved for $k=2$ we know that

$$
\phi: R \rightarrow R / I \times R / I_{k+1} \approx R / I_{1} \times \ldots \times R / I_{k+1}
$$

is onto $R / I \times R / I_{k+1}$ and from the first part we know that

$$
\operatorname{ker} \phi=I \cap I_{k+1}=I_{1} \cap \ldots \cap I_{k+1}
$$

and hence (once again) from the homomorphism theorem, we get that

$$
R /\left(I_{1} \cap \ldots \cap I_{k+1}\right) \approx R / I_{1} \times \ldots \times R / I_{k+1}
$$

3.3 (c):

Let $I_{j}=\left(n_{j}\right)=n_{j} \mathbb{Z}$. As $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$, it follows that $I_{i}+I_{j}=\mathbb{Z}$ for all $i \neq j$, therefore from previous part of the question: the mapping

$$
\phi: \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1}\right) \times \ldots \times \mathbb{Z} /\left(n_{k}\right)
$$

is an epimorphism (onto), so for every $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ there exists $x \in \mathbb{Z}$ for which

$$
\phi(x)=\left(a_{1}+\left(n_{1}\right), \ldots, a_{k}+\left(n_{k}\right)\right) \Longrightarrow x \equiv a_{1}\left(\bmod n_{1}\right), \ldots, x \equiv a_{k}\left(\bmod n_{k}\right)
$$

3.4 (d):

For every $1 \leq i \leq k$, denote

$$
f_{i}(x)=a_{0}^{(i)}+\ldots+a_{d}^{(i)} x^{d}
$$

From part (c) we know that for every $1 \leq t \leq d$ there exists $a_{t} \in \mathbb{Z}$ for which

$$
a_{t} \equiv a_{t}^{(i)}\left(\bmod n_{i}\right), \quad \forall 1 \leq i \leq k
$$

Therefore, if we let $f(x)=a_{0}+\ldots+a_{d} x^{d}$, then

$$
f(x) \equiv f_{i}(x)\left(\bmod n_{i}\right), \quad \forall 1 \leq i \leq k .
$$

4 Question 4.

4.1 (b):

An ideal $I=(a)$ is prime if and only if a ia prime in R. Recall that if $\alpha=$ $a+b \sqrt{-1}$ then $\bar{\alpha}=a-b \sqrt{-1}$ and $|\alpha|^{2}=a^{2}+b^{2} \in \mathbb{N} \cup\{0\}$.

- $2=(1+\sqrt{-1})(1-\sqrt{-1})$ so $2 \mid(1+\sqrt{-1})(1--1])$ but $2 \nmid 1+\sqrt{-1}$ and $2 \nmid 1-\sqrt{-1}$, since $|2|^{2}=4$ and $|1 \pm \sqrt{-1}|^{2}=2$. So 2 is not prime.
- If $1+\sqrt{-1} \mid \alpha \beta$ where $\alpha=a+b \sqrt{-1}$ and $\beta=c+\sqrt{-1} d$, then

$$
2=\left.\left.|1+\sqrt{-1}|^{2}| | \alpha\right|^{2}|\beta|^{2} \Longrightarrow 2| | \alpha\right|^{2} \text { or } 2\left||\beta|^{2}\right.
$$

without loss of generality assume that $2\left||\alpha|^{2}=a^{2}+b^{2}\right.$, so either a, b are odd or a, b are even: If

$$
2|a, b \Longrightarrow 2| \alpha \Longrightarrow 1+\sqrt{-1} \mid \alpha
$$

as $1+\sqrt{-1} \mid 2$; otherwise, we have

$$
2|a+1, b+1 \Longrightarrow 2|(a+1)+(b+1) \sqrt{-1} \Longrightarrow 2 \mid \alpha+(1+\sqrt{-1})
$$

and as $1+\sqrt{-1} \mid 2$ we have that $1+\sqrt{-1} \mid \alpha+(1+\sqrt{-1})$ and hence

$$
1+\sqrt{-1} \mid \alpha
$$

In any case $1+\sqrt{-1} \mid \alpha$ so $1+\sqrt{-1}$ is prime.

- If $3 \mid \alpha \beta$ then $\left.9\left||\alpha|^{2}\right| \beta\right|^{2}$ which implies (and that is enough in this case) that $3\left||\alpha|^{2}\right.$ or 3$||\beta|^{2}$, assume without loss of generality that $3\left||\alpha|^{2}=a^{2}+b^{2}\right.$. Simple observation is that both 3$| a$ and $3 \mid b$: in \mathbb{Z}_{3} we have $\overline{0}^{2}=\overline{0}, \overline{1}^{2}=\overline{1}$ and $\overline{2}^{2}=\overline{1}$, therefore if the sum of two squares $a^{2}+b^{2}$ is divisible by 3 , i.e., is equal to $\overline{0}$ in \mathbb{Z}_{3}, then the only option is that $\bar{a}=\bar{b}=\overline{0}$ in \mathbb{Z}_{3}, i.e., that both a and b are divisible by 3 . Therefore we have

$$
3|a, b \Longrightarrow 3| \alpha=a+b \sqrt{-1}
$$

and 3 is prime.

5 Question 5.

Let $R=\mathbb{Z}[\sqrt{-5}]$ and $I=(2,1+\sqrt{-5})=2 R+(1+\sqrt{-5}) R$.

5.1 (a):

Assume that I is generated by some $x \in R$, so $x=a+b \sqrt{-5}$ for some $a, b \in \mathbb{Z}$. Then

$$
\begin{aligned}
(2,1+\sqrt{-5})=(x) & \Longrightarrow 2,1+\sqrt{-5} \in(x) \Longrightarrow x \mid 2,1+\sqrt{-5} \\
& \Longrightarrow\|x\|^{2}\left|\|2\|^{2},\|1+\sqrt{-5}\|^{2} \Longrightarrow\left(a^{2}+5 b^{2}\right)\right| 4,6 \\
& \Longrightarrow a^{2}+5 b^{2}=1 \text { or } a^{2}+5 b^{2}=2
\end{aligned}
$$

If $a^{2}+5 b^{2}=1$ then $a= \pm 1$ and $b=0$, which imply that $1 \in I$ and hence that there exist $r, s \in R$ such that

$$
1=2 r+(1+\sqrt{-5}) s \Longrightarrow 1-\sqrt{-5}=2(1-\sqrt{-5}) r+6 s \Longrightarrow 2 \mid 1-\sqrt{-5}
$$

and that is clearly a contradiction. Therefore we must have $a^{2}+5 b^{2}=2$ and this equation has no solution $a, b \in \mathbb{Z}$ so once again it is a contradiction $\Longrightarrow I$ is not generated by any element in R.

6 Question 7.

We have the isomorphism $\phi: \mathbb{H} \rightarrow M_{2 \times 2}(\mathbb{C})$ defined by

$$
\phi(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})=\left(\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right)
$$

and clearly there is the mapping $\varphi: \mathbb{C} \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
\varphi(a+b i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

that is a monomorphism (a 1-1 homomorphism); therefore one can define the mapping $\varphi_{2}: M_{2 \times 2}(\mathbb{C}) \rightarrow M_{2 \times 2}\left(M_{2 \times 2}(\mathbb{R})\right) \approx M_{4 \times 4}(\mathbb{R})$ by

$$
\varphi_{2}\left(\left(\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right)\right)=\left(\begin{array}{ll}
\varphi\left(z_{1}\right) & \varphi\left(z_{2}\right) \\
\varphi\left(z_{3}\right) & \varphi\left(z_{4}\right)
\end{array}\right)
$$

which is also a monomorphism; Finally, we get the mapping $\psi=\varphi_{2} \circ \phi: \mathbb{H} \rightarrow$ $M_{4 \times 4}(\mathbb{R})$ given by

$$
\psi(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})=\left(\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right)
$$

and as ϕ is an isomorphism and φ_{2} is a monomorphism, we get that ψ is a monomorphism.

