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1 Question 1.

1.1 (b):

Assume that R is a finite integral domain, so denote R = {r1, ..., rn}. For every
0 6= r ∈ R we have |rR| = |R|, otherwise there exist ri, rj ∈ R such that ri 6= rj

but rri = rrj , so r(ri − rj) = 0 and as R has no zero divisors and r 6= 0, we
get that ri − rj = 0, i.e., that ri = rj . So |rR| = |R| which actually means
that rR = R (as R is finite) and therefore there exists x ∈ R for which rx = 1.
Therefore, every nonzero element in R has an inverse in R so R is a field.

2 Question 2.

2.1 (c):

Let I ⊂ J ⊂ R where I, J � R. We first show that J/I � R/I :

• If a + I, b + I ∈ J/I, i.e., if a, b ∈ J , then

(a + I) − (b + I) = (a − b) + I ∈ J/I

as J ≤ R and hence a − b ∈ J .

• If a + I ∈ J/I and r + I ∈ R/I, i.e., if a ∈ J and r ∈ R, then

(a + I)(r + I) = ar + I ∈ J/I, (r + I)(a + I) = ar + I ∈ J/I

as J � R and hence ra, ar ∈ J .

Next, define the mapping

φ : R/I → R/J by φ(r + I) = r + J.

It is easy to see that φ is a ring homomorphism: if r1, r2 ∈ R then

φ((r1 + I) + (r2 + I)) = φ((r1 + r2) + I) = (r1 + r2) + J = φ(r1 + I) + φ(r2 + I)

and

φ((r1 + I)(r2 + I)) = φ(r1r2 + I) = r1r2 + J = φ(r1 + I)φ(r2 + I),

that ker φ = J/I :

r + I ∈ ker φ ⇐⇒ φ(r + I) = J ⇐⇒ x + J = J ⇐⇒ x ∈ J ⇐⇒ x + I ∈ J/I

so from the first homomorphism theorem it follows that

(R/I)/(J/I) ≈ φ(R/I) = R/J.
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3 Question 3.

Let R be a commutative ring with a unit 1 6= 0 and I1, ..., Ik � R.

3.1 (a):

The mapping φ : R → R/I1 × ... × R/Ik defined by φ(r) = (r + I1, ..., r + Ik) is
a ring homomorphism: For every r1, r2 ∈ R we have

φ(r1 + r2) = ((r1 + r2) + I1, ..., (r1 + r2) + Ik)

= (r1 + I1, ..., r1 + Ik) + (r2 + I1, ..., r2 + Ik) = φ(r1) + φ(r2)

and

φ(r1r2) = (r1r2 + I1, ..., r1r2 + Ik)

= (r1 + I1, ..., r1 + Ik)(r2 + I1, ..., r2 + Ik) = φ(r1)φ(r2).

We can easily see that ker φ = I1 ∩ ... ∩ Ik, as

r ∈ ker φ ⇐⇒ (r + I1, ..., r + Ik) = (I1, ..., Ik)

⇐⇒ r + I1 = I1, ..., r + Ik = Ik ⇐⇒ r ∈ I1, ..., r ∈ Ik

⇐⇒ r ∈ I1 ∩ ... ∩ Ik.

3.2 (b):

We prove this by induction. If k = 2, we assume that I1 + I2 = R, therefore
there exist t1 ∈ I1 and t2 ∈ I2 such that t1 + t2 = 1. Then

t1 + I2 = (t1 + t2) + I2 = 1 + I2 and t2 + I1 = (t2 + t1) + I1 = 1 + I1

and hence for every r, s ∈ R

rt2 + st1 + I1 = r + I1 and rt2 + st1 + I2 = s + I2,

which imply that

φ(rt2 + st1) = ((rt2 + st1) + I1, (rt2 + st1) + I2) = (r + I1, s + I2)

and this proves that φ is onto R/I1×R/I2. The fact that I1∩I2 = I1 ∙I2 follows
from a previous exercise from the homework.

Next, assume that it is true for k and prove it for k + 1: let I1, ..., Ik+1 � R
such that Ii + Ij = R for every i 6= j. Denote I = I1 ∙ ... ∙ Ik, so I + Ik+1 = R :
as Ii + Ik+1 = R for every i = 1, ..., k, there exist xi ∈ Ii and yi ∈ Ik+1 for
i = 1, ..., k such that xi + yi = 1. Then

1 = (x1 + y1) ∙ ... ∙ (xk + yk) = x1 ∙ ...xk + y ∈ I + Ik+1 =⇒ I + Ik+1 = R

as y is a sum of products of y1, ..., yk which are all in Ik+1. From the induction
hypothesis we know that I = I1 ∙ ... ∙ Ik = I1 ∩ ... ∩ Ik and from the first part
and the homomorphism theorem we know that

R/I ≈ R/I1 × ... × R/Ik.
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From what we proved for k = 2 we know that

φ : R → R/I × R/Ik+1 ≈ R/I1 × ... × R/Ik+1

is onto R/I × R/Ik+1 and from the first part we know that

ker φ = I ∩ Ik+1 = I1 ∩ ... ∩ Ik+1

and hence (once again) from the homomorphism theorem, we get that

R/(I1 ∩ ... ∩ Ik+1) ≈ R/I1 × ... × R/Ik+1.

3.3 (c):

Let Ij = (nj) = njZ. As gcd(ni, nj) = 1 for all i 6= j, it follows that Ii + Ij = Z
for all i 6= j, therefore from previous part of the question: the mapping

φ : Z→ Z/(n1) × ... × Z/(nk)

is an epimorphism (onto), so for every a1, ..., ak ∈ Z there exists x ∈ Z for which

φ(x) = (a1 + (n1), ..., ak + (nk)) =⇒ x ≡ a1 (modn1), ..., x ≡ ak (modnk).

3.4 (d):

For every 1 ≤ i ≤ k, denote

fi(x) = a
(i)
0 + ... + a

(i)
d xd.

From part (c) we know that for every 1 ≤ t ≤ d there exists at ∈ Z for which

at ≡ a
(i)
t (modni), ∀1 ≤ i ≤ k.

Therefore, if we let f(x) = a0 + ... + adx
d, then

f(x) ≡ fi(x) (modni), ∀1 ≤ i ≤ k.

4 Question 4.

4.1 (b):

An ideal I = (a) is prime if and only if a ia prime in R. Recall that if α =
a + b

√
−1 then α = a − b

√
−1 and |α|2 = a2 + b2 ∈ N ∪ {0}.

• 2 = (1 +
√
−1)(1 −

√
−1) so 2 | (1 +

√
−1)(1 −−1]) but 2 - 1 +

√
−1 and

2 - 1 −
√
−1, since |2|2 = 4 and |1 ±

√
−1|2 = 2. So 2 is not prime.

• If 1 +
√
−1 | αβ where α = a + b

√
−1 and β = c +

√
−1d, then

2 = |1 +
√
−1|2 | |α|2|β|2 =⇒ 2 | |α|2 or 2 | |β|2

without loss of generality assume that 2 | |α|2 = a2 + b2, so either a, b are
odd or a, b are even: If

2 | a, b =⇒ 2 | α =⇒ 1 +
√
−1 | α
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as 1 +
√
−1 | 2; otherwise, we have

2 | a + 1, b + 1 =⇒ 2 | (a + 1) + (b + 1)
√
−1 =⇒ 2 | α + (1 +

√
−1)

and as 1 +
√
−1 | 2 we have that 1 +

√
−1 | α + (1 +

√
−1) and hence

1 +
√
−1 | α.

In any case 1 +
√
−1 | α so 1 +

√
−1 is prime.

• If 3 | αβ then 9 | |α|2|β|2 which implies (and that is enough in this
case) that 3 | |α|2 or 3 | |β|2, assume without loss of generality that
3 | |α|2 = a2 + b2. Simple observation is that both 3 | a and 3 | b: in Z3

we have 0
2

= 0, 1
2

= 1 and 2
2

= 1, therefore if the sum of two squares
a2 + b2 is divisible by 3, i.e., is equal to 0 in Z3, then the only option is
that a = b = 0 in Z3, i.e., that both a and b are divisible by 3. Therefore
we have

3 | a, b =⇒ 3 | α = a + b
√
−1

and 3 is prime.

5 Question 5.

Let R = Z[
√
−5] and I = (2, 1 +

√
−5) = 2R + (1 +

√
−5)R.

5.1 (a):

Assume that I is generated by some x ∈ R, so x = a + b
√
−5 for some a, b ∈ Z.

Then

(2, 1 +
√
−5) = (x) =⇒ 2, 1 +

√
−5 ∈ (x) =⇒ x | 2, 1 +

√
−5

=⇒ ‖x‖2 | ‖2‖2, ‖1 +
√
−5‖2 =⇒ (a2 + 5b2) | 4, 6

=⇒ a2 + 5b2 = 1 or a2 + 5b2 = 2.

If a2 + 5b2 = 1 then a = ±1 and b = 0, which imply that 1 ∈ I and hence that
there exist r, s ∈ R such that

1 = 2r + (1 +
√
−5)s =⇒ 1 −

√
−5 = 2(1 −

√
−5)r + 6s =⇒ 2 | 1 −

√
−5

and that is clearly a contradiction. Therefore we must have a2 + 5b2 = 2 and
this equation has no solution a, b ∈ Z so once again it is a contradiction =⇒ I
is not generated by any element in R.

6 Question 7.

We have the isomorphism φ : H→ M2×2(C) defined by

φ(a + bi + cj + dk) =

(
a + bi c + di
−c + di a − bi

)
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and clearly there is the mapping ϕ : C→ M2×2(R) defined by

ϕ(a + bi) =

(
a b
−b a

)

that is a monomorphism ( a 1− 1 homomorphism); therefore one can define the
mapping ϕ2 : M2×2(C) → M2×2(M2×2(R)) ≈ M4×4(R) by

ϕ2

((
z1 z2

z3 z4

))

=

(
ϕ(z1) ϕ(z2)
ϕ(z3) ϕ(z4)

)

which is also a monomorphism; Finally, we get the mapping ψ = ϕ2 ◦ φ : H →
M4×4(R) given by

ψ(a + bi + cj + dk) =







a b c d
−b a −d c
−c d a −b
−d −c b a







and as φ is an isomorphism and ϕ2 is a monomorphism, we get that ψ is a
monomorphism.
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